Investigation of the effect of electric field on bacteria isolated from skin infection

##plugins.themes.bootstrap3.article.main##

RABAB BASSIM AL-SALAMI
EMAN ABOOB MUKHAIFI
WIJDAN HUSSEIN AL-TAMIMI

Abstract

Abstract. Al-Salami RB, Mukhaifi EA, Al-Tamimi WH. 2024. Investigation of the effect of electric field on bacteria isolated from skin infection. Biodiversitas 25: 1320-1328. Nineteen bacterial isolates were obtained from twenty-six samples obtained from various patients with skin infections in the current study. These bacteria were identified by a genetic method depending on 16S rRNA and the molecular identification of cna and fnbA genes of Staphylococcus aureus isolates were detected, and an antimicrobial electric field was applied using various voltages and durations to target both Gram-positive and Gram-negative bacteria. The results showed that Staphylococcus sp. was the most dominant genera, followed its Acinatobacter sp. The high frequent species was Staphylococcus aureus (24%) followed by Staphylococcus epidermidis (21%), Staphylococcus epidermidis and Staphylococcus argenteus (10.5%), Staphylococcus haemolyticus, Acinetobacter baumannii and Acinetobacter variabilis (5.2%). Eleven new strains were identified and recorded in GenBank. A phylogenetic tree was also constructed based on 16S rRNA gene sequences of isolates to evaluate their close relationship and evolution between them. The bands of each amplified cna and fnbA gene were described at 192 bp and 191 bp respectively. The effect of the antimicrobial electric field showed an extremely high and significant decrease of the viable bacterial count of S. haemolyticus and A. baumannii after the exposure to an electric field of (1-5) V for 15 min, where the viable count of bacteria reduced sharply with percentage bacterial death (19-95%) and (16-100%), respectively, and from (66-100%) and (52-100%) after 30 min, respectively.

##plugins.themes.bootstrap3.article.details##

References
ABOUD E M, Burghal A, LAFTAH A H. 2021. Genetic identification of hydrocarbons degrading bacteria isolated from oily sludge? and petroleum-contaminated soil in Basrah City, Iraq. Biodiversitas Journal of Biological Diversity 22. DOI: 10.13057/biodiv/d220441
ALSHAMI H G A, AL-TAMIMI W H, HATEET R R. 2022. Screening for extracellular synthesis of silver nanoparticles by bacteria isolated from Al-Halfaya oil field reservoirs in Missan province, Iraq. Biodiversitas Journal of Biological Diversity 23. DOI: 10.13057/biodiv/d230720
Alyousif N, LUAIBI Y Y Y A, HUSSEIN W. 2020. Distribution and molecular characterization of biosurfactant-producing bacteria. Biodiversitas Journal of Biological Diversity 21. DOI: 10.13057/biodiv/d210914
AL-ZAIDI M H H, AL-TAMIMI W H, SALEH A A A. 2023. Molecular determination of the microbial diversity associated with vaginitis and testing their sensitivity to selected antimicrobials. Biodiversitas Journal of Biological Diversity, 24(8). DOI: 10.13057/biodiv/d240806
Byrd A L, Belkaid Y, Segre J A. 2018. The human skin microbiome. Nature Reviews Microbiology 16, 143–155. DOI: 10.1038/nrmicro.2017.157
Cavallo I, Oliva A, Sivori F, Truglio M, Fabrizio G, Pasqua M, ... & Di Domenico E G. 2023. Acinetobacter baumannii in the critically ill: complex infections get complicated. Frontiers in Microbiology, 14, 1196774. DOI:10.3389/fmicb.2023.1196774
Dréno B, Araviiskaia E, Berardesca E, Gontijo G, Sanchez Viera M, Xiang L F, Martin R, Bieber T. 2016. Microbiome in healthy skin, update for dermatologists. Journal of the European Academy of Dermatology and Venereology 30, 2038–2047. DOI: 10.1111/jdv.13965
El-Sheshtawy H S, Aiad I, Osman M E, Abo-ELnasr A A, Kobisy A S. 2015. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria. Egyptian Journal of Petroleum 24, 155–162. DOI: 10.1016/j.ejpe.2015.05.005
Foster T J, Geoghegan J A, Ganesh V K, Höök M. 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nature Reviews Microbiology 12, 49–62. DOI: 10.1038/nrmicro3161
Giladi M, Porat Y, Blatt A, Wasserman Y, Kirson E D, Dekel E, Palti Y. 2008. Microbial Growth Inhibition by Alternating Electric Fields. Antimicrobial Agents and Chemotherapy 52, 3517–3522. DOI: 10.1128/aac.00673-08
Ibrahim F, Khan T, Pujalte G G A. 2015. Bacterial Skin Infections. Primary Care: Clinics in Office Practice 42, 485–499. DOI: 10.1016/j.pop.2015.08.001
Ibraheim M H, El-Din D 2013. Hz frequency magnetic field effects on Pseudomonas aeruginosa and Bacillus subtilis bacteria. IOSR J Appl Phys, 5(3), 2278-4861.
Jubeh B, Breijyeh Z, Karaman R. 2020. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules, 25(12), 2888. DOI:10.3390/molecules25122888
Kot B, Sytykiewicz H, Sprawka I. 2018. Expression of the Biofilm-Associated Genes in Methicillin-Resistant Staphylococcus aureus in Biofilm and Planktonic Conditions. International Journal of Molecular Sciences 19, 3487. DOI: 10.3390/ijms19113487
Krishnamurthi V R, Rogers A, Peifer J, Niyonshuti I I, Chen J, Wang Y. 2020. Microampere electric currents caused bacterial membrane damage and two-way leakage in short time. bioRxiv (Cold Spring Harbor Laboratory). DOI: 10.1101/2020.03.13.991067
Landemaine L, Gregory Da Costa, Fissier E, Francis C, Morand S, Verbeke J, Michel M-L, Romain Briandet, Sokol H, Gueniche A, Bernard D, Chatel J-M, Aguilar L, Langella P, Clavaud C, Richard M L. 2023. Staphylococcus epidermidis isolates from atopic or healthy skin have opposite effect on skin cells: potential implication of the AHR pathway modulation 14. DOI: 10.3389/fimmu.2023.1098160
Lane D. 1991. 16S/23S rRNA sequencing. In: Nucleic Acid Techniques In Bacterial Systematics. New York(US): John Wiley and Sons. pp 115-175.
Lim J S, Park H, Cho S, Yoon H-S. 2018. Antibiotic Susceptibility and Treatment Response in Bacterial Skin Infection. Annals of Dermatology 30, 186. DOI: 10.5021/ad.2018.30.2.186
McLoughlin I J, Wright E M, Tagg J R, Jain R, Hale J D F. 2021. Skin Microbiome—The Next Frontier for Probiotic Intervention. Probiotics and Antimicrobial Proteins. DOI: 10.1007/s12602-021-09824-1
Mohanty A, Mohapatra K, Pal B. 2018. Isolation and Identification of Staphylococcus aureus from Skin and Soft Tissue Infection in Sepsis Cases, Odisha. Journal of Pure and Applied Microbiology 12, 419–424. DOI: 10.22207/jpam.12.1.49
Mozyrska O, Boianovskiy S, Rudnieva K. 2023. Selection of the isolate of Staphylococcus epidermidis for bacteriotherapy in patients with atopic dermatitis. Polish annals of medicine 30, 44–49. DOI: 10.29089/paom/157118
Nourbakhsh F, Namvar A E. 2016. Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hygiene and Infection Control 11. DOI: 10.3205/dgkh000267
Ohshima T, Tanino T, Guionet A, Takahashi K, Takaki K. 2021. Mechanism of pulsed electric field enzyme activity change and pulsed discharge permeabilization of agricultural products. Japanese Journal of Applied Physics 60, 060501. DOI: 10.35848/1347-4065/abf479
Pillet F, Formosa-Dague C, Baaziz H, Dague E, Rols M-P. 2016. Cell wall as a target for bacteria inactivation by pulsed electric fields. Scientific Reports 6. DOI: 10.1038/srep19778
Rocha Balzan L D L, Rossato A M, Riche C V W, Cantarelli V V, D’Azevedo P A, Valério de Lima A, ... & Sampaio J L M. 2023. Staphylococcus argenteus Infections, Brazil. Microbiology Spectrum, 11(1), e01179-22. DOI:10.1128/spectrum.01179-22
Saei H D. 2010. Distribution of collagen adhesin gene among various types of Staphylococcus aureus strains associated with bovine mammary gland. Comparative Clinical Pathology 21, 571–576. DOI: 10.1007/s00580-010-1136-9
Shawki M M, Gaballah A. 2015. The effect of low AC electric field on bacterial cell death. Romanian Journal of Biophysics, 25(2), 163-172.
Šalaševi?ius A, Uždavinyt? D, Visockis M, Ruzgys P, Šatkauskas S. 2021. Effect of Pulsed Electric Field (PEF) on Bacterial Viability and Whey Protein in the Processing of Raw Milk. Applied Sciences 11, 11281. DOI: 10.3390/app112311281
Satar Aziz Gmais, Burghal A A. 2022. Molecular Identification of Oil-Utilizing Bacteria Isolated From Oil Contaminated Soils in Basrah City. Zenodo (CERN European Organization for Nuclear Research). DOI: 10.5281/zenodo.7485637
Silverberg B. 2021. A Structured Approach to Skin and Soft Tissue Infections (SSTIs) in an Ambulatory Setting. Clinics and Practice 11, 65–74. DOI: 10.3390/clinpract11010011
Toh S C, Lihan S, Bunya S R, Leong S S. 2023. In vitro antimicrobial efficacy of Cassia alata (Linn.) leaves, stem, and root extracts against cellulitis causative agent Staphylococcus aureus 23. DOI: 10.1186/s12906-023-03914-z
Vitzthum F, Geiger G, Bisswanger H, Elkine B, Brunner H, Bernhagen J. 2000. Amplifiable DNA from Gram-negative and Gram-positive bacteria by a low strength pulsed electric field method. Nucleic Acids Research 28. DOI: 10.1093/nar/28.8.e37
Yang Y, Qu L, Mijakovic I, Wei Y. 2022. Advances in the human skin microbiota and its roles in cutaneous diseases. Microbial Cell Factories 21, 176. DOI: 10.1186/s12934-022-01901-6
Zegad?o K, Giero? M, ?arnowiec P, Durlik-Popi?ska K, Kr?cisz B, Kaca W, Czerwonka G. 2023. Bacterial Motility and Its Role in Skin and Wound Infections. International Journal of Molecular Sciences 24, 1707. DOI: 10.3390/ijms24021707
Zhao N, Cheng D, Jian Y, Liu Y, Liu J, Huang Q, He L, Wang H, Miao F, Li M, Liu Q. 2021. Molecular characteristics of Staphylococcus aureus isolates colonizing human nares and skin. Medicine in Microecology 7, 100031. DOI: 10.1016/j.medmic.2020.100031