Lichen diversity and taxonomy in Bukit Barisan Grand Forest Park, North Sumatra, Indonesia

##plugins.themes.bootstrap3.article.main##

OKY KUSUMA ATNI
ERMAN MUNIR
ETTI SARTINA SIREGAR
M. N. SALEH

Abstract

Abstract. Atni OK, Munir E, Siregar ES, Saleh MN. 2024. Lichen diversity and taxonomy in Bukit Barisan Grand Forest Park, North Sumatra, Indonesia. Biodiversitas 25: 1623-1630. Located in Bandar Baru Village, Deli Serdang District, North Sumatra, Bukit Barisan Grand Forest Park stands out for its uniqueness and high biodiversity, including lichens. This study aims to identify and map lichen diversity in the research area. Surveys were conducted from January to February 2024 using an exploratory method along designated tracks. Therefore, 57 lichen species from 23 families and 38 genera were found. Based on their thallus types, 26 lichen species were identified as crustose, 17 as foliose, 6 as squamulose, 5 as fruticose, and 3 as filamentous. Reproductive structures varied, 13 species possessed apothecia, soredia, and lacked distinguishable reproductive structures, 10 had lirellae, 7 had perithecia, and 2 had isidia. Graphidaceae emerged as the most prevalent family with 8 species, predominantly growing on bark substrates. Although lichen distribution correlated with pH levels, its correlation with the preference for lower pH levels was low. Host trees from the Pinaceae and Lauraceae families were the most populated by lichens in this study. Research on lichen diversity in Bukit Barisan Grand Forest Park is crucial, considering the increasing development and deforestation in North Sumatra. A more comprehensive study of lichens is urgently required.

##plugins.themes.bootstrap3.article.details##

References
Abas A, Din L. 2021. The diversity of lichens along elevational gradients in the tropical montane forest of Selangor, Malaysia. Sains Malays 50 (4): 1199-1209. DOI: 10.17576/jsm-2021-5005-01.
Aptroot A, Stapper NJ, Košuthová A, Van Herk KC. 2021. Lichens as an indicator of climate and global change. In Clim. Change (pp. 483-497). DOI: 10.1016/B978-0-12-821575-3.00023-2.
Armstrong RA. 2017. Adaptation of Lichens to Extreme Conditions. Plant Adaptation Strategies in Changing Environment. Springer, Singapore. DOI: 10.1007/978-981-10-6744-0_1.
Aththorick TA, Pasaribu N, Eyckman E. 2018. Stand structure and carbon stock of tree vegetation in Deleng Macik Taman Hutan Raya Bukit Barisan Karo District, North Sumatra, Indonesia. In Journal of Physics: Conference Series (Vol. 1116, No. 5, p. 052009). IOP Publishing. [Indonesian].
Balabanova B, Lazarova M, Boev B, Barbu-Tudoran L, Suciu M. 2021. Contaminant Levels and Ecological Effects. Springer Cham, North Macedonia. DOI: 10.1007/978-3-030-66135-9.
Baldauf S, Porada P, Raggio J, Maestre FT, Tietjen B. 2021. Relative humidity predominantly determines long?term biocrust?forming lichen cover in drylands under climate change. J. Ecol. 109(3): 1370-1385. DOI: 10.1111/1365-2745.13563.
Bässler C, Cadotte MW, Beudert B, Heibl C, Blaschke M, Bradtka JH, Langbehn T, Werth S, Müller J. 2016. Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography, 39(7): 689–698. DOI: 10.1111/ ecog.01789.
Brodo IM. 2016. Keys to Lichens of North America: Revised and Expanded. Yale University Press, United States.
Elkhateeb WA, El-Ghwas DE, Daba, GM. 2022. Lichens uses surprising uses of lichens that improve human life. J biomed res environ sci, 3(2): 189-194. DOI: 10.37871/JBRES1420.
Elkhateeb WA, Elnahas MO, Daba GM. 2021. Lichen therapy: Highlights on the pharmaceutical potentials of lichens. J Microbial Biotechnol 6 (1): 1-10. DOI: 10.23880/oajmb-16000190.
Hawksworth DL, Grube M. 2020. Lichens redefined as complex ecosystems. New Phytol. 227(5): 1281. DOI: 10.1111/NPH.16630.
Honegger R. 2012. “The symbiotic phenotype of lichen-forming ascomycetes and their endo- and epibionts,” in Fungal Association. The Mycota – A Comprehensive Treatise on Fungi as Experimental System for Basic and Applied Research, 2nd Edn, Vol. IX, ed. K. Esser (Berlin: Springer), 288–339.
Hutasuhut MA, Febriani H, Devi S. 2021. Identification and habitat characteristics of lichen types in the Sicikeh-cikeh Nature Tourism Park, Dairi Regency, North Sumatra. Jurnal biolokus. 4 (1): 43-54. DOI: 10.30821/biolokus.v4i1.957. [Indonesian].
Kalra R, Conlan XA, Goel M. 2020. Fungi as a potential source of pigments: Harnessing filamentous fungi. Front Chem 8: 369. DOI: 10.3389/fchem.2020.00369.
Khairunnisa Y. 2016. Lichen Types in Moraceae Tree Stands in Lake Forest in the Leuser Ecosystem (KEL) Langkat Regency [Thesis]. Universitas Sumatera Utara, Medan. [Indonesian].
Kubiak D, Osyczka P. 2020. Non-forested vs forest environments: the effect of habitat conditions on host tree parameters and the occurrence of associated epiphytic lichens. Fungal Ecol, 47, 100957. DOI: 10.1016/j.funeco.2020.100957.
Lücking R, Hodkinson BP, Leavitt SD. 2016. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – Approaching one thousand genera. Bryologist 119, 361–416. DOI: 10.1639/0007-2745-119. 4.361.
Martínez I, Flores T, Otálora MA, Belinchón R, Prieto M, Aragón G, Escudero A. 2012. Multiple-scale environmental modulation of lichen reproduction. Fungal Biol. 116(11): 1192-1201. DOI: 10.1016/j.funbio.2012.09.005.
Mcdonald L, Van Woudenberg M, Dorin B, Adcock AM, Mcmullin RT, Cottenie K. 2017. The effects of bark quality on corticolous lichen community composition in urban parks of southern ontario. Bot. 95(12): 1141-1149. DOI: 10.1139/cjb-2017-0113.
Muvidha A. 2020. Lichens in East Java. Library Academy, Tulungagung. [Indonesian].
Nascimbene J, Marini L. 2015. Epiphytic lichen diversity along elevational gradients: Biological traits reveal a complex response to water and energy. J Biogeogr 42 (7): 1222-1232. DOI: 10.1111/jbi.12493.
Nirhamo A, Pykälä J, Halme P, Komonen A. 2021. Lichen communities on Populus tremula are affected by the density of Picea abies. Appl. Veg. Sci. 24(2): e12584. DOI: 10.1111/avsc.12584.
Notov AA, Zhukova LA. 2015. Epiphytic lichens and bryophytes at different ontogenetic stages of Pinus sylvestris. Wulfenia. 22:245-246.
Öztürk ?, Seyhan ORAN. 2011. Investigations on the bark pH and epiphytic lichen diversity of Quercus taxa found in Marmara Region. J. appl. biol. sci. 5(1): 27-33. E-ISSN: 2146-0108.
Pasaribu N, Atni OK, Siregar JP. 2023. Diversity and species composition of lichens across altitudinal range in the Batang Toru Forest, North Sumatra, Indonesia. BIODIVERSITAS 24 (4). DOI: 10.13057/biodiv/d240429.
Paul F, Otte J, Schmitt I, Dal Grande F. 2018. Comparing Sanger sequencing and high throughput metabarcoding for inferring photobiont diversity in lichens. Sci. Rep. 8:8624. DOI: 10.1038/s41598-018-26 947-8.
Phinney NH, Gauslaa Y, Palmqvist K, Esseen PA. 2021. Macroclimate drives growth of hair lichens in boreal forest canopies. J. Ecol. 109(1): 478-490. DOI: 10.1111/1365-2745.13522.
Roth R, Wagner R, Goodenough U. 2021. Lichen 3. Outer Layers. Algal Res 56: 102332. DOI: 10.1016/j.algal.2021.102332.
Shukla V, Upreti DK, Bajpai R. 2014. Lichens to Biomonitor the Environment. Springer India, India. DOI: 10.1007/978-81-322-1503-5.
Stanton DE, Ormond A, Koch NM, Colesie C. 2023. Lichen ecophysiology in a changing climate. Am. J. Bot. 110(2): e16131. DOI: 10.1002/ajb2.16131.
Sujetovien? G. 2017. Epiphytic lichen diversity as indicator of environmental quality in an industrial area (Central Lithuania). Pol J Ecol 65 (1): 38-45. DOI: 10.3161/15052249PJE2017.65.1.004.
Thomson JW. 2019. The Lichen Genus Cladonia in North America. University of Toronto Press, Canada.
van den Boom PP, Lücking R, Sipman HJ. 2023. Notes on Graphidaceae in Macaronesia, with Descriptions of Four New Species. Divers, 15(7): 817. DOI: 10.35535/pfsyst-2023-0010
Zanetti CA, Marcelli MP, Jungbluth P. 2015. Comparative anatomy of Canoparmelia and Crespoa species (Parmeliaceae, lichenized fungi). Bryologist 118 (2): 184-194. DOI: 10.1639/0007-2745-118.2.184.

Most read articles by the same author(s)

1 2 > >>