Molecular diversity of rice germplasms from Thailand characterized by different pericarp colors using Inter Simple Sequence Repeat (ISSR) markers

##plugins.themes.bootstrap3.article.main##

JUTHAPORN SAENGPRAJAK
JIRAPA PHETSOM
APHIDECH SANGDEE
PORNTIP ATICHART
PIYADA THEERAKULPISUT

Abstract

Abstract. Saengprajak J, Phetsom J, Sangdee A, Atichart P, Theerakulpisut P. 2024. Molecular diversity of rice germplasms from Thailand characterized by different pericarp colors using Inter Simple Sequence Repeat (ISSR) markers. Biodiversitas 25: 2839-2848. Studying genetic diversity in rice using molecular markers is necessary for varietal identification, better understanding of relationships and evolution, and conserving genetic resources. This study aimed to evaluate the genetic diversity of rice germplasms from Thailand characterized by different pericarp colors using ISSR markers. Thirty-two white and colored rice genotypes were assessed using 16 selected ISSR markers, which generated 179 alleles ranging from 210 to 1,374 bp, averaging 11.19 alleles per locus. The polymorphism percentage ranged from 40% to 100%, averaging 80%. The genetic similarity coefficient ranged from 0.458 to 0.855, while PIC values varied between 0.15 and 0.45, averaging 0.31. ISSR markers show a high Resolving Power (RP) of 12.15 and a Marker Index (MI) of 3.20, indicating their significant discriminatory power and effectiveness in detecting genetic diversity. The dendrogram grouped genotypes into five clusters: Cluster I included 5 red pericarp genotypes, Cluster II had 6 purple-black pericarp genotypes, Cluster III had 2 mixed white and purple-black pericarp genotypes, Cluster IV included 18 white pericarp genotypes, and Cluster V comprised 1 white pericarp genotype. PCA results corresponded to seed coat traits, forming eight grouping patterns similar to dendrogram clusters. These findings show that ISSR markers effectively assess genetic diversity and relationships in rice germplasms, providing valuable information for managing germplasm resources, developing variety-specific markers, and supporting rice breeding programs.

##plugins.themes.bootstrap3.article.details##

References
Al-Daej MI, Rezk AA, El-Malky MM, Shalaby TA, Ismail M. 2023. Comparative genetic diversity assessment and marker-trait association using two DNA marker systems in rice (Oryza sativa L.). Agronomy 13: 329. DOI: 10.3390/agronomy13020329.
Al-Turki TA, Basahi MA. 2015. Assessment of ISSR based molecular genetic diversity of hassawi rice in Saudi Arabia. Saudi J Biol Sci 22: 591-599. DOI: 10.1016/j.sjbs.2015.06.027.
Amiteye S. 2021. Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon 30: 7-10. DOI: 10.1016/j.heliyon.2021.e08093.
Amoon MH, Abdul-Hamed ZA. 2020. Determination genetic diversity of inbred lines and hybrids of maize using ISSR technic. Iraq J Agric Sci 51: 269-277. DOI: 10.36103/ijas.v51i1.925.
Arslan E, Mutlu EG, Dursun Ö, Ba?c? SA. 2020. Comparative analysis of agronomic traits and ISSR method among some soybeans [Glycine max (L.) Merr.] genotypes. KSU J Agric Nat 23: 687-696. DOI: 10.18016/ksutarimdoga.v23i53104.631286.
Ashraf H, Ghouri F, Baloch FS, Nadeem MA, Fu X, Shahid MQ. 2024. Hybrid rice production: A worldwide review of floral traits and breeding technology, with special emphasis on China. Plants 13: 578. DOI: 10.3390/plants13050578.
Ashraf J, Malik W, Iqbal M, Khan A, Qayyum A, Noor E, Abid MA, Naseer Cheema HM, Ahmad MQ. 2016. Comparative analysis of genetic diversity among Bt cotton genotypes using EST-SSR, ISSR and morphological markers. J Agr Sci Tech 18: 517-531.
Bhat FM, Sommano SR, Riar CS, Seesuriyachan P, Chaiyaso T, Prom-u-Thai C. 2020. Status of bioactive compounds from bran of pigmented traditional rice varieties and their scope in production of medicinal food with nutraceutical importance. Agronomy 10: 1817. DOI: 10.3390/agronomy10111817.
Botstein D, White RL, Skalnick MH, Davies RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32: 314-331.
Dutfield G. 2011. The role of the international Union for the Protection of New Varieties of Plants (UPOV). Intellectual Property Issue Paper 9: 24.
El-Esawi MA, Elashtokhy MM, Shamseldin SA, El-Ballat EM, Zayed EM Heikal YM. 2022. Analysis of genetic diversity and phylogenetic relationships of wheat (Triticum aestivum L.) genotypes using phenological, molecular and DNA barcoding markers. Genes 14: 34. DOI: 10.3390/genes14010034.
Fukagawa NK, Ziska LH. 2019. Rice: Importance for global nutrition. J Nutr Sci Vitaminol (Tokyo) 65: 2-3. DOI: 10.3177/jnsv.65.S2.
Haritha G, Sudhakar T, Chandra D, Ram T, Divya B, Sarla N. 2016. Informative ISSR markers help identify genetically distinct accessions of Oryza rufipogon in yield improvement. Rice Sci 23: 225-241. DOI: 10.1016/j.rsci.2016.08.001.
Iqbal J, Altaf MT, Jan MF, Raza W, Liaqat W, ul Haq I, Jamil A, Ahmed S, Ali A, Mehmood A. 2023. Exploring genetic diversity in cotton genotypes using EST-SSR and ISSR markers: A comparative study. Sarhad J Agric 39: 800-814. DOI: 10.17582/journal.sja/2023/39.4.800.814.
Kshirsagar SS, Samal KC, Rabha M., Bastia DN, Rout GR. 2014. Identification of variety diagnostic molecular marker of high yielding rice varieties. In: Ghosh A (ed). Proc Natl Acad Sci India Sect B Biol Sci 84: 389-396. DOI: 10.1007/s40011-013-0216-4.
Kumbhar SD, Kulwal PL, Patil JV, Sarawate CD, Gaikwad AP, Jadhav AS. 2015. Genetic diversity and population structure in landraces and improved rice varieties from India. Rice Sci 22: 99-107. DOI: 10.1016/j.rsci.2015.05.013.
Meena RK, Raj H, Sharma P, Bhandari MS, Ginwal HS. 2021. Low diversity and high genetic divergence depicted the threat of genetic erosion in Calamus nambariensis and Calamus tenuis. Indian J Biotechnol 20: 273-283.
Mohidem NA, Hashim N, Shamsudin R, Che Man H. 2022. Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture 12: 741. DOI: 10.3390/agriculture12060741.
Moonsap P, Laksanavilat N, Sinumporn S, Tasanasuwan P, Kate-Ngam S, Jantasuriyarat C. 2019. Genetic diversity of Indo-China rice varieties using ISSR, SRAP and InDel markers. J Genet 98: 80. DOI: 10.1007/s12041-019-1123-0.
Nivedha R, Manonmani S, Kalaimagal T, Raveendran M, Kavitha S. 2024. Assessing the genetic diversity of parents for developing hybrids through morphological and molecular markers in rice (Oryza sativa L.). Rice 17: 17. DOI: 10.1186/s12284-024-00691-2.
Park JR, Yang WT, Kwon YS, Kim HN, Kim KM, Kim DH. 2019. Assessment of the genetic diversity of rice germplasms characterized by black-purple and red pericarp color using simple sequence repeat markers. Plants 8: 471. DOI: 10.3390/plants8110471.
Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2: 225-238. DOI: 10.1007/BF00564200.
Reddy ChS, Babu AP, Swamy BP, Kaladhar K, Sarla N. 2009 ISSR markers based on GA and AG repeats reveal genetic relationship among rice varieties tolerant to drought, flood, or salinity. J Zhejiang Univ Sci B 10: 133-141. DOI: 10.1631/jzus.B0820183.
Rini DS, Budiyanti Y, Valentine M, Permana R. 2023. ISSR and SRAP for assessing genetic variability of Indonesian local rice genotypes (Oryza sativa L.). Crop Breed Appl Biotech 23: e448923411. DOI: 10.1590/1984-70332023v23n4a46.
Rohlf FJ. 2001 NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, version 2.0, Exeter Software Setauket, New York.
Roldan-Ruiz I, Dendauw J, van Bockstaele E, Depicker A, De Loose M. 2000. AFLP markers reveal high polymorphic rates in rye grasses (Lolium spp.). Mol Breed 6: 125-134. DOI: 10.1023/A:1009680614564.
Sangma HCR, Parameshwari S. 2023. Health benefits of black rice (Zizania aqatica) - A review. Mater Today Proc 80: 3380-3384. DOI: 10.1016/j.matpr.2021.07.257.
Sarif HM, Rafii MY, Ramli A, Oladosu Y, Musa HM, Rahim HA, Zuki ZM, Chukwu SC. 2020. Genetic diversity and variability among pigmented rice germplasm using molecular marker and morphological traits. Biotechnol Biotechnol Equip 34: 747-762. DOI: 10.1080/131028.2020.1804451.
Shirmohammadli S, Sabouri H, Ahangar L, Ebadi AA, Sajjadi SJ. 2018. Genetic diversity and association analysis of rice genotypes for grain physical quality using iPBS, IRAP, and ISSR markers. J Genet Resour 4: 122-129. DOI: 10.22080/JGR.2019.15415.1115.
Talamphai S, Arshad KT, Tan XL, Surasilp T, Tasanasuwan P, Sinumporn S. 2021. Genetic diversity analysis of starch synthesis related genes (SSRGs) in rice varieties from Thailand, Laos and Yunnan province of China. Genomics Genet 14: 18-24. DOI: 10.14456/gag.2021.3.
Tanaporn K, Sujaree N, Chontira S. 2021. Genetic diversity of Thai upland rice germplasm based on Inter Simple Sequence Repeats marker. Chiang Mai J Sci 48: 1287-1300.
Tran TKP, Pham MH, Trinh TH, Widiarsih S. 2022. Investigation of the genetic diversity of jewel orchid in Vietnam using RAPD and ISSR markers. Biodiversitas 23 (9): 4816-4825. DOI: 10.13057/biodiv/d230950.
Uslan U, Jannah N. 2020. Genetic diversity of local corn (Zea mays) cultivars from South Amarasi, Kupang District, Indonesia by inter simple sequence repeats marker. Biodiversitas 21 (3): 1208-1214. DOI: 10.13057/biodiv/d210348.
Verma KS, ul Haq S, Kachhwaha S, Kothari SL. 2017. RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: A unique source of germplasm highly adapted to drought and high-temperature stress. 3 Biotech 7: 288. DOI: 10.1007/s13205-017-0918-z.
Wan YT, Xin-Xiang A, Fan CZ, Xu FR, Yu TQ, Tang CF, Dai LY 2008. ISSR analysis on genetic diversity of the 34 populations of Oryza meyeriana distributing in Yunnan province, China. Rice Sci 15: 13-20. DOI: 10.1016/S1672-6308(08)60014-1.
Xu JY, Zhu Y, Yi Z, Wu G, Xie GY, Qin MJ. 2018. Molecular diversity analysis of Tetradium ruticarpum (WuZhuYu) in China based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers. Chin J Nat Med. 16: 1-9. DOI: 10.1016/S1875-5364(18)30024-4.

Most read articles by the same author(s)