Effects of colchicine on polyploid induction, morphology, and yield components of several Thai rice varieties

##plugins.themes.bootstrap3.article.main##

SUNTAREE SURSON
SUPHASIT SITTHAPHANIT
JAKKAPAT PRACHACHIT
THARADOL JITJAK
KHUMPANAT WONGKERSON

Abstract

Abstract. Surson S, Sitthaphanti S, Prachachit J, Jitjak T, Wongkerson K. 2024. Effects of colchicine on polyploid induction, morphology, and yield components of several Thai rice varieties. Biodiversitas 25: 4677-4689. Rice (Oryza sativa) is a Thai staple food and is different from foreign rice in its characteristics. By producing polyploids, rice cultivation becomes resistant to unfavorable climatic conditions and produces good yields and good tastes. Inducing polyploidy can improve Thai rice. This research aimed to induce polyploid formation in Thai rice to be used as a breeding source for improving Thai polyploid rice in the future. This study created polyploids from 10 Thai rice varieties to test colchicine's impact on morphology and yield. Colchicine-treated rice plants were tested for polyploidy at 4 months of age using flow cytometry and awn seed characteristics. The results showed that colchicine treatment and varied exposure periods at 1 month of age significantly affected germination and abnormalities in rice varieties. Variations in rice varieties and exposure times resulted in varying morphological and yield component attributes at 3 months. All colchicine-treated rice types had 5-90% awn seeds. This study reveals that rice varieties and exposure durations affect the morphology and features of yield components. Awn seeds determined rice polyploidy, which varied by variety. Blackberry has the most awn-seed plants (90%), followed by Maejo 2 (60%), and Homnaka (60%).

##plugins.themes.bootstrap3.article.details##

References
Cabahug RAM, Khanh HTTM, Lim K-B, Hwang Y-J. 2020. Phenotype and ploidy analysis of the colchicine-induced M1 generation of Echeveria species. Hortic Sci Technol 38 (4): 522-537. DOI: 10.7235/HORT.20200049.
Cabahug RAM, Khanh HTTM, Lim K-B, Hwang Y-J. 2021. Phenotype and ploidy evaluation of colchicine-induced Echeveria ‘Peerless’. J Toxicol Environ Health Sci 13: 17-24. DOI: 10.1007/s13530-020-00069-z.
Chen R, Feng Z, Zhang X, Song Z, Cai D. 2021. A new way of rice breeding: Polyploid rice breeding. Plants 10 (3): 422. DOI: 10.3390/plants10030422.
de Carvalho Santos TT, de Oliveira Amorim VB, dos Santos-Serejo JA, da Silva Ledo CA, Haddad F, Ferreira CF, Amorim EP. 2019. Genetic variability among autotetraploid populations of banana plants derived from wild diploids through chromosome doubling using SSR and molecular markers based on retrotransposons. Mol Breed 39: 95. DOI: 10.1007/s11032-019-0996-1.
Devi KR, Chandra BS, Lingaiah N, Yadla H, Vankudoth V. 2017. Analysis of variability, correlation and path coefficient studies for yield and quality traits in rice (Oryza sativa L.). Agric Sci Dig 37 (1): 1-9. DOI: 10.18805/asd.v0iOF.7328.
Dwinanda P, Syukur S, Suliansyah I. 2020. Induction of mutations with gamma ray radiation to improve the characteristics of wheat (Triticum aestivum L.) genotype IS-Jarissa. IOP Conf Ser Earth Environ Sci 497: 012013. DOI: 10.1088/1755-1315/497/1/012013.
Fathurrahman F. 2023. Effect of colchicine mutagen on phenotype and genotype of Vigna unguiculata var. sesquipedalis the 7th generation. Biodiversitas 24 (3): 1408-1415. DOI: 10.13057/biodiv/d240310.
Gaafar RM, El Shanshoury AR, El Hisseiwy AA, AbdAlhak MA, Omar AF, Abd El Wahab MM, Nofal RS. 2017. Induction of apomixis and fixation of heterosis in Egyptian rice Hybrid1 line using colchicine mutagenesis. Ann Agric Sci 62: 51-60. DOI: 10.1016/j.aoas.2017.03.001.
Jena KK, Ballesfin MLE, Vinarao RB. 2016. Development of Oryza sativa L. by Oryza punctata Kotschy ex Steud. monosomic addition lines with high value traits by interspecific hybridization. Theor Appl Genet 129: 1873-1886. DOI: 10.1007/s00122-016-2745-8.
Jokari S, Shekafandeh A, Jowkar A. 2022. In vitro tetraploidy induction in Mexican lime and sour orange and evaluation of their morphological and physiological characteristics. Plant Cell Tissue Organ Cult 150 (3): 651-668. DOI: 10.1007/s11240-022-02319-z.
Kasmiyati S, Kristiani EBE, Herawati MM, Rondonuwu FS. 2021. Exploring anticancer activity of wild and polyploid mutant of Artemisia cina. Biodiversitas 22 (3): 1227-1234. DOI: 10.13057/biodiv/d220319.
Kim HL, Lee J, Chae WB. 2022. Polyploidization reduces the probability of selecting progenies with high root pithiness and yield potential in radish (Raphanus sativus L.). Hortic Environ Biotechnol 63 (2): 239-247. DOI: 10.1007/s13580-021-00390-7.
Kumar K, Neelam K, Singh G, Mathan J, Ranjan A, Brar DS, Singh K. 2019. Production and cytological characterization of a synthetic amphiploid derived from a cross between Oryza sativa and Oryza punctata. Genome 62 (11): 705-714. DOI: 10.1139/gen-2019-0062.
Le K-C, Ho T-T, Lee J-D, Paek K-Y, Park S-Y. 2020. Colchicine mutagenesis from long-term cultured adventitious roots increases biomass and ginsenoside production in wild ginseng (Panax ginseng Mayer). Agronomy 10 (6): 785. DOI: 10.3390/agronomy10060785.
Lee S, Choi S, Jeon D, Kang Y, Kim C. 2020. Evolutionary impact of whole genome duplication in Poaceae family. J Crop Sci Biotechnol 23: 413-425. DOI: 10.1007/s12892-020-00049-2.
Maru B, Parihar A, Kulshrestha K, Vaja M. 2021. Induction of polyploidy through colchicine in cotton (Gossypium herbaceum) and its conformity by cytology and flow cytometry analyses. J Genet 100: 52. DOI: 10.1007/s12041-021-01297-z.
Mori S, Yamane T, Yahata M, Shinoda K. Murata N. 2016. Chromosome doubling in Limonium bellidifolium (Gouan) Dumort. by colchicine treatment of seeds. Hort J 85 (4): 366-371. DOI: 10.2503/hortj.MI-117.
Münzbergová Z. 2017. Colchicine application significantly affects plant performance in the second generation of synthetic polyploids and its effects vary between populations. Ann Bot 120 (2): 329-339. DOI: 10.1093/aob/mcx070.
Rao X, Ren J, Wang W, Chen R, Xie Q, Xu Y, Li D, Song Z, He Y, Cai D, Yang P, Lyu S, Li L, Liu W, Zhang X. 2023. Comparative DNA-methylome and transcriptome analysis reveals heterosis and polyploidy-associated epigenetic changes in rice. Crop J 11 (2): 427-437. DOI: 10.1016/j.cj.2022.06.011.
Saha SR, Hassan L, Haque MA, Islam MM, Rasel M. 2019. Genetic variability, heritability, correlation and path analyses of yield components in traditional rice (Oryza sativa L.) landraces. J Bangladesh Agric Univ 17 (1): 26-32. DOI: 10.3329/jbau.v17i1.40659.
Shariat A, Sefidkon F. 2021. Tetraploid induction in savory (Satureja khuzistanica): Cytological, morphological, phytochemical and physiological changes. Plant Cell Tissue Organ Cult 146: 137-148. DOI: 10.1007/s11240-021-02053-y.
Song ZJ, Du CQ, Zhang XH, Chen DL, He YC, Cai DT. 2014. Studies on awns in polyploid rice (Oryza sativa L.) and preliminary cross experiments of a special awnless tetraploid rice. Genet Resour Crop Evol 61: 797-807. DOI: 10.1007/s10722-013-0074-1.
Sun W, Xu XH, Li Y, Xie L, He Y, Li W, Lu X, Sun H, Xie X. 2020. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice. New Phytol 226 (3): 823-837. DOI: 10.1111/nph.16399.
Surson S, Sitthapanit S, Wongma N. 2015. In vivo induction of tetraploid in tangerine citrus plants (Cirus reticulata Blanco) with the use of colchicine. Pak J Biol Sci 18: 37-41. DOI: 10.3923/pjbs.2015.37.41.
Surson S, Sitthaphanit S, Wongkerson K 2021. Polyploidy induction of black sesame (Sesamum indicum L.) for yield component improvement. Songklanakarin J Sci Technol 43 (4): 1049 -1055. DOI: 10.14456/sjst-psu.2021.138.
Surson S, Sitthaphanit S, Wongkerson K. 2024. Effect of colchicine on Andrographis variety Phichit 4-4 for plant breeding in stem and leaf characteristics. Indian J Agric Res 58 (5): 744-751. DOI: 10.18805/IJARe.AF-829.
Valenzuela F, D’Afonseca V, Hernández R, Gómez A, Arencibia AD. 2022. Validation of reference genes in a population of blueberry (Vaccinium corymbosum) plants regenerated in colchicine. Plants 11 (19): 2645. DOI: 10.3390/plants11192645.
van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nat Rev Genet 18 (7): 411-424. DOI: 10.1038/nrg.2017.26.
Verma AK, Reddy KS, Dhansekar P, Singh B. 2017. Effect of acute gamma radiation exposure on seed germination, survivability and seedling growth in cumin cv. Gujarat Cumin-4. Intl J Seed Spices 7 (1): 23-28.
Wang L, Cao S, Wang P, Lu K, Song Q, Zhao FJ, Chen ZJ. 2021. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proc Natl Acad Sci USA 118 (13): e2023981118. DOI: 10.1073/pnas.2023981118.
Wang LJ, Zhang Q, Cao QZ, Gao X, Jia GX. 2020. An efficient method for inducing multiple genotypes of tetraploids Lilium rosthornii Diels. Plant Cell Tissue Organ Cult 141: 499-510. DOI: 10.1007/s11240-020-01807-4.
Weihmüller E, Beltrán C, Sartor M, Espinoza F, Spampinato C, Pessino S. 2014. Genetic response of Paspalum plicatulum to genome duplication. Genetica 142: 227-234. DOI: 10.1007/s10709-014-9769-2.
Xiong D, Flexas J, Huang J, Cui K, Wang F, Douthe C, Lin M. 2022. Why high yield QTLs failed in preventing yield stagnation in rice?. Crop Environ 1: 103-107. DOI: 10.3389/fpls.2021.754790.
Yan YJ, Qin SS, Zhou NZ, Xie Y, He Y. 2022. Effects of colchicine on polyploidy induction of Buddleja lindleyana seeds. Plant Cell Tissue Organ Cult 149 (3): 735-745. DOI: 10.1007/s11240-022-02245-0.
Zeinullina A, Zargar M, Dyussibayeva E, Orazov A, Zhirnova I, Yessenbekova G, Zotova L, Rysbekova A, Hu YG. 2023. Agro-morphological traits and molecular diversity of Proso Millet (Panicum miliaceum L.) affected by various colchicine treatments. Agronomy 13 (12): 2973. DOI: 10.3390/agronomy13122973.
Zhang X, Gao J. 2020. In vitro tetraploid induction from multigenotype protocorms and tetraploid regeneration in Dendrobium officinale. Plant Cell Tissue Organ Cult 141: 289-298. DOI:10.1007/s11240-020-01786-6.