Isolation and potential test of indigenous bacteria from Singolangu, Magetan, Indonesia for bioremediation of organophosphate compounds

##plugins.themes.bootstrap3.article.main##

PUJIATI
YULIA WULAN PRASETYANTI
MUH. WASKITO ARDHI
FATIMAH
RICO RAMADHAN
NI'MATUZAHROH

Abstract

Abstract. Pujiati, Prasetyani YW, Ardhi MW, Fatimah, Ramadhan R, Ni’matuzahroh N. 2025. Isolation and potential test of indigenous bacteria from Singolangu, Magetan, Indonesia for bioremediation of organophosphate compounds. Biodiversitas 26: 1029-1038. The objective of this study was to isolate indigenous bacteria from soil contaminated with pesticide residues and assess their potential for bioremediation of organophosphate compounds, specifically from the profenofos and chlorpyrifos groups. The methodology employed was bacterial isolation, characterization, and ex-situ bioaugmentation testing with a design that included six treatments. The parameters observed included pH, N, P, K, profenofos, and chlorpyrifos pesticide residues. By the fourth week, the bioremediation results demonstrated the exceptional effectiveness of bacteria from the Pseudomonas genus, particularly isolate B3, which outperformed other isolates in terms of N, P, and K pH values, which were 90 ppm, 94 ppm, 175 ppm, and 6, respectively. The lowest N, P, K was isolate B1, with consecutive values of 47, 63, 129, and a pH value of 6. The control soil on pesticide residue levels in the chlorpyrifos test was 150 ppm, and profenofos was 29 ppm. In the results of soil testing with Pseudomonas bacteria (isolate B3), chlorpyrifos levels were reduced by 41 ppm to 109 ppm, and profenofos levels were reduced by 21.8 ppm to 7.2 ppm. Isolate B1 was able to reduce profenofos levels by 18 ppm to 132 ppm and decrease profenofos by 9.2 ppm to 18.8 ppm. The test results showed that the type of indigenous bacteria and the length of incubation time have an impact on soil quality and pesticide residue levels.

##plugins.themes.bootstrap3.article.details##

References
Ambreen S, Yasmin A, Aziz S. 2020. Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading chlorpyrifos, triazophos and dimethoate. Heliyon 6 (7): e04221. DOI: 10.1016/j.heliyon.2020.e04221.
Aswathi A, Pandey A, Sukumaran RK. 2019. Rapid degradation of the organophosphate pesticide-Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresour Technol 292: 122025. DOI: 10.1016/j.biortech.2019.122025.
Bahri S, Rokhim S, Prasiska YS. 2019. Kontaminasi bakteri Escherichia coli pada sampel daging. J Health Sci Preven 3: 62-67. DOI: 10.29080/jhsp.v3i1.195. [Indonesian]
Chaimanee V, Evans JD, Chen Y, Jackson C, Pettis JS. 2016. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J Insect Physiol 89: 1-8. DOI: 10.1016/j.jinsphys.2016.03.004.
Cozzolino ME, Córdoba ME, Ramos PD, Ferrari SG, Silva PG. 2024. Phosphate solubilization by Bacillus isolates and its influence in a cyanobacterial co-culture. Malays J Microbiol 20 (3): 289-295. DOI: 10.21161/mjm.220150.
Cruz C, Vishwakarma K, Choudhary DK. 2021. Soil Nitrogen Ecology. Springer Nature Switzerland, Switzerland. DOI: 10.1007/978-3-030-71206-8.
Dotaniya ML, Meena VD, Basak BB, Meena RS. 2016. Potassium Uptake by Crops as Well as Microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds). Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer India, New Delhi. DOI: 10.1007/978-81-322-2776-2_19.
Ergüven GÖ, Demir G. 2019. Evaluation of the detoxification potential of Micrococcus strains and plants for bioremediate organochlorine herbicides. Intl J Innov Approach Agric Res 3 (3): 353-364. DOI: 10.29329/ijiaar.2019.206.1.
Fan W, Kam KA, Zhao H, Culligan PJ, Kymissis I. 2022. An optical soil sensor for NPK nutrient detection in smart cities. 18th Intl Conf Intell Environ. DOI: 10.1109/IE54923.2022.9826759.
Gandhi K, Vasudeva C, Singh V, Umekar M. 2021. Immobilised TiO2 application for pesticides degradation using a solar still. Clean Eng Technol 4: 100163. DOI: 10.1016/j.clet.2021.100163.
Garcia-Sanchez M, Bertrand I, Barakat A, Zeroual Y, Oukarroum A, Plassard C. 2023. Improved rock phosphate dissolution from organic acids is driven by nitrate assimilation of bacteria isolated from nitrate and CaCO3-rich soil. PLoS One 18 (3): e0283437. DOI: 10.1371/journal.pone.0283437.
Getenga ZM, Mogusu EO, Ngige AN, Kimosop SJ, Mutua GK, Kengara F, Reiner S, Ulrike D. 2023. A review of the enhanced degradation of pesticides in tropical agricultural soils. J Environ Eng Sci 19: 9-17. DOI: 10.1680/jenes.22.00096.
Jain D, Saheewala H, Sanadhaya S, Joshi A, Bhojiya AA, Verma AK, Mohanty SR. 2022. Potassium solubilizing microorganisms as soil health engineers: An insight into molecular mechanism. In: Dubey RC, Kumar P (eds). Rhizosphere Engineering. Academic Press, London. DOI: 10.1016/B978-0-323-89973-4.00007-7.
Kaur R, Singh D, Kumari A, Sharma G, Rajput S, Arora S, Kaur R. 2023. Pesticide residues degradation strategies in soil and water: A review. Intl J Environ Sci Technol 20: 3537-3560. DOI: 10.1007/s13762-021-03696-2.
Kuhad RC, Singh S, Lata, Singh A. 2011. Phosphate-Solubilizing Microorganisms. In: Singh A, Parmar N, Kuhad RC (eds). Bioaugmentation, Biostimulation and Biocontrol. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: 10.1007/978-3-642-19769-7_4.
Kumar D. 2022. Bioremediation of Imazetharpyrin in Soil/Water System. [Thesis]. Rani Lakshmi Bai Central Agricultural University, Jhansi.
Lavandier RC, Arêas J, Lemos LS, de Moura JF, Taniguchi S, Montone R, Quinete NS, Hauser-Davis RA, Siciliano S, Moreira I. 2023. Trophic chain organochlorine pesticide contamination in a highly productive upwelling area in Southeastern Brazil. Intl J Environ Res Public Health 20 (14): 6343. DOI: 10.3390/ijerph20146343.
Le TH, Hoang QC, Vu DD, Vo THT. 2021. Biodegradation of organophosphorus insecticide methyl parathion by soil microorganisms. E3S Web Conf 265: 03002. DOI: 10.1051/e3sconf/202126503002.
Lupi L, Bedmar F, Wunderlin DA, Miglioranza KSB. 2019. Levels of organochlorine pesticides in soils, mesofauna and streamwater from an agricultural watershed in Argentina. Environ Earth Sci 78: 3-9. DOI: 10.1007/s12665-019-8579-3.
Lv YC, Xu G, Sun JN, Bresti? M, Živ?ák M, Shao HB. 2015. Phosphorus release from the soils in the yellow river delta: Dynamic factors and implications for eco-restoration. Plant Soil Environ 61: 339-343. DOI: 10.17221/666/2014-PSE.
Masrie M, Rosman MSA, Sam R, Janin Z. 2017. Detection of Nitrogen, Phosphorus, and Potassium (NPK) nutrients of soil using optical transducer. Proceeding of the 4th IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA) 28-30 November 2017, Putrajaya, Malaysia. DOI: 10.1109/ICSIMA.2017.8312001
Matos IF, do Carmo Silva B, de Souza SB, Bertolazi AA, de Souza Pedroni NL, Intorne A, Ribeiro DP, Ramos AC. 2021. Ecophysiology of Nitrogen in Symbiotic Relationships of Plants and Microorganisms. In: Cruz C, Vishwakarma K, Choudhary DK, Varma A (eds). Soil Nitrogen Ecology. Springer International Publishing, Cham. DOI: 10.1007/978-3-030-71206-8_2.
Meng D. 2019. An alkaline phosphatase from Bacillus amyloliquefaciens YP6 of new application in biodegradation of five broad-spectrum organophosphorus pesticides. J Environ Sci Health B 54: 336-343. DOI: 10.1080/03601234.2019.1571363.
Mishra SK, Tripathi KM, Pandey S. 2023. Effect of chemical pesticides on soil health and its physio-chemical properties. Novel Perspect Geogr Environ Earth Sci 13 (8): 156-167. DOI: 10.9734/bpi/npgees/v8/6115E.
Mohite BV, Koli SH, Narkhede CP, Patil SN, Patil S V. 2017. Prospective of microbial exopolysaccharide for heavy metal exclusion. Appl Biochem Biotechnol 183: 582-600. DOI: 10.1007/s12010-017-2591-4.
Nag M, Lahiri D, Ghosh S, Ghosh S, Ray RR. 2022. Autotrophic nitrification in bacteria. In: Shah MP, Rodriguez-Couto S (eds). Development in Wastewater Treatment Research and Processes. Elsevier, Cambidge. DOI: 10.1016/B978-0-323-91901-2.00003-6.
Ngadi N, Zaelany AA, Latifa A, Harfina D, Asiati D, Setiawan B, Ibnu F, Triyono T, Rajagukguk Z. 2023. Challenge of agriculture development in Indonesia: Rural youth mobility and aging workers in agriculture sector. Sustainability 15 (2): 922. DOI: 10.3390/su15020922.
Ore OT, Adeola AO, Bayode AA, Adedipe DT, Nomngongo PN. 2023. Organophosphate pesticide residues in environmental and biological matrices: Occurrence, distribution and potential remedial approaches. Environ Chem Ecotoxicol 5: 9-23.
Pujiati P. 2022. Teknik Pengamatan Mikroba, 1st edn. UNIPMA Press, Madiun. [Indonesian]
Pujiati P, Kiswardianta RB, Dewi NK, Fadillah N. 2024. Evaluate the quality of compost fertilizer with additional bio-slurry on mustard plants (Brassica rapa L.). AIP Conf Proc 3095: 020006. DOI: 10.1063/5.0205088
Pujiati P, Fatimah, Ramadhan R, Ni’matuzahroh N. 2025a. Mycoremediation of pesticide-contaminated soil: A review. BIO Web Conf 148: 1-16. DOI: 10.1051/bioconf/202414802020.
Pujiati P, Hertanti, Kiswardianta RB, Fatimah, Ramadhan R, Ni’matuzahroh N. 2025b. Isolation and potential evaluation of organophosphate-indigenous degrading fungi from Singolangu Farmland, Magetan, Indonesia. Biodiversitas 26: 166-177. DOI: 10.13057/biodiv/d260118.
Riyaz M, Shah RA, Sivasankaran K. 2021. Pesticide residues: Impacts on fauna and the environment. Pesticide Residues: Impacts on Fauna and the Environment. Intech Open, London. DOI: 10.5772/intechopen.98379.
Roy A, Roy M, Alghamdi S, Dablool AS, Almakki AA, Ali IH, Yadav KK, Islam MR, Cabral-Pinto MMS. 2022. Role of microbes and nanomaterials in the removal of pesticides from wastewater. Intl J Photoenerg 2022 (1): 2131583. DOI: 10.1155/2022/2131583.
Rütting T, Schleusner P, Hink L, Prosser JI. 2021. The contribution of ammonia-oxidizing archaea and bacteria to gross nitrification under different substrate availability. Soil Biol Biochem 160: 108353. DOI: 10.1016/j.soilbio.2021.108353.
Salama AA. 2015. Response of rice plants to inoculation with indigenous strains of cyanobacterial along with different levels of inorganic n-fertilizers. Adv Biochem Biotechnol 1 (1): 1-14.
Salwan R, Rana A, Sharma V. 2023. Chapter 4-Microscopy and imaging analysis of microorganisms. In: Salwan R, Sharma V (eds.) Laboratory Methods in Microbiology and Molecular Biology. Academic Press, London.
Schaeffer A, Wijntjes C. 2022. Changed degradation behavior of pesticides when present in mixtures. Eco-Environ Health 1: 23-30. DOI: 10.1016/j.eehl.2022.02.002.
Sharma C, Sharma P, Kumar A, Walia Y, Kumar R, Umar A, Ibrahim AA, Akhtar MohdS, Alkhanjaf AAM, Baskoutas S. 2023a. A review on ecology implications and pesticide degradation using nitrogen fixing bacteria under biotic and abiotic stress conditions. Chem Ecol 39: 753-774. DOI: 10.1080/02757540.2023.2253220.
Sharma P, Kanta Pandey K, Lepcha A, Sharma S, Maurya N, Kumar Sharma S, Pradhan R, Kumar R. 2023b. Elucidating the potential of nitrifying bacteria in mitigating nitrogen pollution and its industrial application. Microsphere 2: 246-259. DOI: 10.59118/xfkd8065.
Sindhu SS, Parmar P, Phour M, Sehrawat A. 2016. Potassium-Solubilizing Microorganisms (KSMs) and Its Effect on Plant Growth Improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds). Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer India, New Delhi.
Steiner M, Falquet L, Fragnière AL, Brown A, Bacher S. 2024. Effects of pesticides on soil bacterial, fungal and protist communities, soil functions and grape quality in vineyards. Ecol Solutions Evidence 5: 1-12. DOI: 10.1002/2688-8319.12327.
Subsanguan T, Vangnai AS, Siripattanakul-Ratpukdi S. 2020. Aerobic and anoxic degradation and detoxification of profenofos insecticide by Pseudomonas plecoglossicida strain PF1. Ecotoxicol Environ Saf 190: 110129. DOI: 10.1016/j.ecoenv.2019.110129.
Thi Hieu Thu N, Cao Son T, Thu Trang D, Thi My Le N, Duy Toi N, Thi Van N, Thuy Hang D. 2022. Indigenous diazotrophs and their effective properties for organic agriculture. Viet J Biotechnol 20: 751-760. DOI: 10.15625/1811-4989/17070.
Tian D, Niu S. 2015. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10 (2): 024019. DOI: 10.1088/1748-9326/10/2/024019.
Tomczyk NJ, Rosemond AD, Kaz A, Benstead JP. 2023. Contrasting activation energies of litter-associated respiration and P uptake drive lower cumulative P uptake at higher temperatures. Biogeosciences 20: 191-204. DOI: 10.5194/bg-20-191-2023.
Wakeel A, Ishfaq M. 2022. Potassium dynamics in soils. In: Wakeel A, Ishfaq M (eds). Potash Use and Dynamics in Agriculture. Springer Singapore, Singapore.
Wang Z, Zhang H, Liu L, Li S, Xie J, Xue X, Jiang Y. 2022. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiol 22 (1): 296. DOI: 10.1186/s12866-022-02715-7.
Yadav AN. 2021. Soil Microbiomes for Sustainable Agriculture. Springer, Cham.
Zhang X, Zhan Y, Zhang H, Wang R, Tao X, Zhang L, Zuo Y, Zhang L, Wei Y, Li J. 2021. Inoculation of phosphate-solubilizing bacteria (Bacillus) regulates microbial interaction to improve phosphorus fractions mobilization during kitchen waste composting. Bioresour Technol 340: 125714. DOI: 10.1016/j.biortech.2021.125714.

Most read articles by the same author(s)

<< < 1 2 3 4