Phenotypic and genotypic screening of Bacillus cereus local isolates for their antimicrobial resistance

##plugins.themes.bootstrap3.article.main##

IZZADINI FARHANI
RATIH DEWANTI-HARIYADI
HANIFAH NURYANI LIOE

Abstract

Abstract. Farhani I, Dewanti-Hariyadi R, Lioe HN. 2024. Phenotypic and genotypic screening of Bacillus cereus local isolates for their antimicrobial resistance. Biodiversitas 25: 4507-4514. Bacillus cereus is a sporeformer bacterium that ranks second as Indonesia's most common cause of foodborne illnesses from 2000 to 2015. The bacterium produces cereulides and enterotoxins, which trigger emetic and diarrheal syndromes. The rise of antibiotic resistance in pathogens such as B. cereus could complicate treatment and allow the bacterium to act as the reservoir of antibiotic-resistant genes. Currently, antibiotic resistance in B. cereus has not been reported in Indonesia. This study aims to evaluate the antibiotic resistance of 21 B. cereus local isolates obtained from foods against eight different antibiotics. The phenotypic resistance was evaluated using the Kirby-Bauer disc diffusion method, while resistance genes were detected using a polymerase chain reaction targeting the bla1, tetL, and tetB genes. None of the isolates (0%; 0/21) showed resistance to chloramphenicol, ciprofloxacin, or erythromycin. However, all (100%; 21/21) were resistant to ampicillin, cefoxitin, cephalothin, and penicillin G. Additionally, 4.8% (1/21) were susceptible to erythromycin, while 33.3% (7/21) were resistant to tetracycline. The detection of resistance-encoding genes revealed that 100% (21/21) of the isolates possessed the bla1 gene, but tetL and tetB genes were absent in any of the isolates (0%; 0/21).

##plugins.themes.bootstrap3.article.details##

References
Abd El-Tawab A, Elhofy F, Shawky Aahla, El Morsy Doaa. 2020. Molecular detection of antibiotic resistant bla gene in B. cereus isolated from meat
products. Benha Vet Med J. 38(2):152–155. doi:10.21608/bvmj.2020.27904.1199.
Agerso Y, Jensen LB, Givskov M, Roberts MC. 2002. The identification of a tetracycline resistance gene tet ( M ), on a Tn 916 -like transposon, in the
Bacillus cereus group. 214(214):251–256. DOI: 10.1111/j.1574-6968.2002.tb11355.x.
Albaridi NA, Yehia HM. 2022. The real role of select herb and spice extracts against Bacillus cereus ATCC 14579 growth in cooked rice. Food Sci
Technol. 42. doi:10.1590/fst.08521.
Algammal AM, Alfifi KJ, Mabrok M, Alatawy M, Abdel-Moneam DA, Alghamdi S, Azab MM, Ibrahim RA, Hetta HF, El-Tarabili RM. 2022. Newly
emerging MDR B. cereus in Mugil seheli as the first report commonly harbor nhe, hbl, cytK, and pc-plc virulence genes and bla1, bla2, tetA, and ermA resistance genes. Infect Drug Resist. 15(April):2167–2185. doi:10.2147/IDR.S365254.
Aref Shariati, Maniya Arshadi, Mohammad Ali Khosrojerdi, Mostafa Abedinzadeh, Mahsa Ganjalishahi, Abbas Maleki, Mohsen Heidary, Khoshnood S.
The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Heal.:1–28. DOI: 10.3389/fpubh.2022.1025633.
Arisanti RR, Indriani C, Wilopo SA. 2018. Kontribusi agen dan faktor penyebab kejadian luar biasa keracunan pangan di Indonesia: Kajian sistematis.
[contribution of agents and factors causing foodborne outbreak in Indonesia: A systematic review] Ber Kedokt Masy. 34(3):99. doi:10.22146/bkm.33852.
Cha X, Lin Y, Brennan C, Cao J, Shang Y. 2023. Antibiotic resistance of Bacillus cereus in plant foods and edible wild mushrooms in a province.
microorganisms. 11(12):1–13. doi:10.3390/microorganisms11122948.
Chen S, Zhao S, White DG, Carl M, Lu R, Yang H, Mcdermott PF, Schroeder CM, Ayers S. 2004. Characterization of Salmonella serovars isolated from
retail meats. Appl Environ Microbiol. 70(1):1–7. doi:10.1128/AEM.70.1.1.
Chen Y, Tenover FC, Koehler TM. 2004. ?-lactamase gene expression in a penicillin-resistant Bacillus anthracis strain. Antimicrob Agents Chemother.
(12):4873–4877. doi:10.1128/AAC.48.12.4873-4877.2004.
Citron DM, Appleman MD. 2006. In vitro activities of daptomycin, ciprofloxacin, and other antimicrobial agents against the cells and spores of clinical
isolates of Bacillus species. J Clin Microbiol. 44(10):3814–3818. doi:10.1128/JCM.00881-06.
CLSI. 2021. CLSI M100-ED29: 2021 Performance standards for antimicrobial susceptibility testing, 30th Edition.
Ellouze M, Buss Da Silva N, Rouzeau-Szynalski K, Coisne L, Cantergiani F, Baranyi J. 2021. Modeling Bacillus cereus growth and cereulide
formation in cereal-, dairy-, meat-, vegetable-based food and culture medium. Front Microbiol. 12(February). doi:10.3389/fmicb.2021.639546.
FAO. 2021. The FAO action plan on antimicrobial resistance 2021–2025. https://www.fao.org/documents/card/en/c/cb5545en/.
FDA. 2001. Bacteriological Analytical Manual. 8th ed. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-14-bacillus-cereus.
Fiedler G, Schneider C, Igbinosa EO, Kabisch J, Brinks E, Becker B, Stoll DA, Cho GS, Huch M, Franz CMAP. 2019. Antibiotics resistance and toxin
profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiol. 19(1):1–13. doi:10.1186/s12866-019-1632-2.
Fraccalvieri R, Bianco A, Difato LM, Capozzi L, Del Sambro L, Simone D, Catanzariti R, Caruso M, Galante D, Normanno G, et al. 2022. Toxigenic
genes, pathogenic potential and antimicrobial resistance of Bacillus cereus group isolated from ice cream and characterized by whole genome sequencing. Foods. 11(16). doi:10.3390/foods11162480.
Geneaid. 2017. Presto TM Mini gDNA Bacteria Kit. Geneaid. 004:1–8. https://www.geneaid.com/data/download/attached/1602745908822784327.pdf
Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC, de Silva NR, Gargouri N, et al. 2015. World health
organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12(12):1–23. doi:10.1371/journal.pmed.1001923.
Iwase T, Tajima A, Sugimoto S, Okuda KI, Hironaka I, Kamata Y, Takada K, Mizunoe Y. 2013. A simple assay for measuring catalase activity: A visual
approach. Sci Rep. 3:3–6. doi:10.1038/srep03081.
Jansson L, Hedman J. 2019. Challenging the proposed causes of the PCR plateau phase. Biomol Detect Quantif. DOI:10.1016/j.bdq.2019.100082.
Jung J, Jin H, Seo S, Jeong M, Kim B, Ryu K, Oh K. 2022. Short communication: Enterotoxin genes and antibiotic susceptibility of Bacillus cereus
isolated from garlic chives and agricultural environment. Int J Environ Res Public Health. 19(19):10–16. doi:10.3390/ijerph191912159.
Kavanaugh DW, Porrini C, Dervyn R, Ramarao N. 2022. The pathogenic biomarker alcohol dehydrogenase protein is involved in Bacillus cereus
virulence and survival against host innate defence. PLoS One. 17:1–13. doi:10.1371/journal.pone.0259386. http://dx.doi.org/10.1371/journal.pone.0259386.
Lee H, Yoon Y. 2021. Etiological agents implicated in foodborne illness world wide. Food Sci Anim Resour. 41(1):1–7. doi:10.5851/KOSFA.2020.E75.
López AC, De Ortúzar RVM, Alippi AM. 2008. Tetracycline and oxytetracycline resistance determinants detected in Bacillus cereus strains isolated
from honey samples. Rev Argent Microbiol. 40(4):231–236.
Lynn TM, Vijayalakshmi G, Vanajakshi V. 2014. Molecular characterization of enterotoxin genes from food-borne pathogen, Bacillus cereus. J Sci
Innov Res. 2(1):30–35.
Merzougui S, Lkhider M, Grosset N, Gautier M, Cohen N. 2014. Preval_ence, PFGE typing, and antibiotic resistance of Bacillus cereus group isolated
from food in Morocco. Foodborne Pathog Dis. 11(2):145–149. doi:10.1089/fpd.2013.1615.
Messelhäusser U, Frenzel E, Blöchinger C, Zucker R, Kämpf P, Ehling-Schulz M. 2014. Emetic Bacillus cereus are more volatile than thought: Recent
foodborne outbreaks and preval_ence studies in Bavaria (2007-2013). Biomed Res Int. 2014:1–9. doi:10.1155/2014/465603.
Miao X, Zhu L, Bai X. 2022. Bacterial community assembly and beta-lactamase (bla) genes regulation in a full-scale chloraminated drinking water
supply system. J Environ Chem Eng. 10(3):107677. doi:10.1016/j.jece.2022.107677. https://doi.org/10.1016/j.jece.2022.107677.
Nanteza H, Dewanti-Hariyadi R, Nurjanah S. 2022a. The occurrence of Bacillus Cereus in white pepper from Bogor, Indonesia. IOP Conf Ser Earth
Environ Sci. 1097(1). doi:10.1088/1755-1315/1097/1/012030.
Nanteza H, Dewanti-Hariyadi R, Nurjanah S. 2022b. Phylogenic identification of toxigenic Bacillus cereus in chilli and white pepper from Bogor area,
Indonesia. 46(2):9–21. DOI: https://doi.org/10.35219/foodtechnology.2022.2.01.
Oktari A, Supriatin Y, Kamal M, Syafrullah H. 2017. The bacterial endospore stain on Schaeffer Fulton using variation of methylene blue solution. J
Phys Conf Ser. 812(1). doi:10.1088/1742-6596/812/1/012066.
Paray AA, Singh M, Amin Mir M. 2023. Gram Staining: A brief review. Int J Res Rev. 10(9):336–341. doi:10.52403/ijrr.20230934.
Rizki WM, Dewanti-hariyadi R, Dewantari H. 2022. Comparison of predictive growth models for Bacillus cereus in cooked and fried rice during storage.
Ann Univ Dunarea Jos Galati, Fascicle VI Food Technol. 46(2):89–103. doi:https://doi.org/10.35219/foodtechnology.2022.2.07.
Roberts MC. 1996. Tetracycline resistance determinants: Mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS
Microbiol Rev. 19(1):1–24. doi:10.1016/0168-6445(96)00021-6.
Rodrigo D, Rosell CM, Martinez A. 2021. Risk of Bacillus cereus in relation to rice and derivatives. Foods. 10(2). doi:10.3390/foods10020302.
Saeed BMS, Abbas BA, Al-jadaan SAN. 2018. Molecular detection of tetracycline resistance genes. Basrah J Vet Res. 17(3):223–234.
Skockova A, Cupakova S, Karpiskova R, Janstova B. 2012. Detection of tetracycline resistance genes in Escherichia coli from raw cow’s milk. J
Microbiol Biotechnol Food Sci. 1(Special Issue):777–784.
Son KL, Nugroho ASD, Rahayujati B, Gozali LK. 2020. Food poisoning outbreak caused by diarrhoeal Bacillus cereus in Tegalkenongo village, Bantul,
Yogyakarta, Indonesia: A retrospective study. Asia Pac Fam Med. 18(1):1–5. doi:10.22146/APFM.V18I1.62.
Vardanyan R, Hruby V. 2006. Antibiotics. In: Synthesis of essential drugs. Tucson, USA: Elsevier. p. 425–498.
Whong CM, Kwaga JK. 2007. Antibiograms of Bacillus cereus isolates from some Nigerian Foods. Niger Food J. 25(1):178–183.
doi:10.4314/nifoj.v25i1.33667.
Zarei-Baygi A, Smith AL. 2021. Intracellular versus extracellular antibiotic resistance genes in the environment: Preval_ence, horizontal transfer, and
mitigation strategies. Bioresour Technol. 319:124181. doi:10.1016/j.biortech.2020.124181. https://doi.org/10.1016/j.biortech.2020.124181.
Zhuang M, Achmon Y, Cao Y, Liang X, Chen L, Wang H, Siame BA, Leung KY. 2021. Distribution of antibiotic resistance genes in the environment.
Environ Pollut. 285:117402. doi:10.1016/j.envpol.2021.117402. https://doi.org/10.1016/j.envpol.2021.117402.