Agronomic and genetic characteristics of f1 black rice × white glutinous rice crosses

##plugins.themes.bootstrap3.article.main##

UMMI SHOLIKHAH
ILHAM MUJAHIDIN
WAHYU INDRA DUWI FANATA
TRI RATNASARI
AHMAD ILHAM TANZIL

Abstract

Abstract. Sholikhah U, Mujahidin I, Fanata WID, Ratnasari T, Tanzil AI. 2025. Agronomic and genetic characteristics of f1 black rice × white glutinous rice crosses. Biodiversitas 26: 528-535. Black rice cultivation faces obstacles such as long maturity periods, tall plant height, and low productivity. This study investigated the agronomic characteristics and genetic linkage of rice color traits (anthocyanin) in the F1 generation of crosses between black rice and white glutinous rice. The genetic study utilized DNA markers to detect the linkage of rice color traits, with RM 252 serving as the DNA marker. The plant materials used were Paketih white glutinous rice, which was used as the female parent, Purwokerto local black rice served as the male parent, and F1 plants derived from crosses between Paketih white glutinous rice and Purwokerto local black rice. The results revealed that genetic analysis using the RM 252 DNA marker produced two bands within a single genome of the F1 plants, indicating that the F1 plants exhibit heterozygous traits. Agronomic data, analyzed in the independent sample t-test, showed that F1 plants in the vegetative phase were classified as tall, with substantial number of tillers and productive tillers. In the generative phase, F1 plants displayed faster flowering, longer panicle length, a moderate number of grains per panicle, and heavier grain weight per clump than those of the parents, and a 1000-grain weight intermediate between the parents. The results of this study also confirm that the inheritance of rice color traits and their agronomic potential can be used to improve the efficiency of breeding programs to produce superior varieties. The genetic relationship detected with RM 252 can be used to accelerate the selection of anthocyanin-containing plants.

##plugins.themes.bootstrap3.article.details##

References
Adi EBM, Indrayani S, Burhana N, Mulyaningsih ES. 2021. Parameter genetik karakter agronomi pada galur F1 padi hasil persilangan galur murni dan kultivar lokal Indonesia. Agrosainstek: Jurnal Imu dan Teknologi Pertanian 5: 8-17. DOI: 10.33019/agrosainstek.v5i1.143. [Indonesian]
Ahmad F, Hisham SN, Yusof SN, Ahmad MS, Hasan NA, Hassan AA, Sukiran NL, Bhuiyan AR, Hussein S, Harun AR, Shamsudin NAA. 2023. Heterosis analysis of F1 progenies derived from IS21 × MR220CL2 and IS21 × UKMRC16 crossing combinations. IOP Conf Ser: Earth Environ Sci 1208: 012036. DOI: 10.1088/1755-1315/1208/1/012036.
Ahmar S, Gill RA, Jung K-H, Faheem A, Qasim MU, Mubeen M, Zhou W. 2020. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook. Intl J Mol Sci 21 (7): 2590. DOI: 10.3390/ijms21072590.
Akbar MR, Purwoko BS, Dewi IS, Suwarno WB, Sugiyanta, Anshori MF. 2021. Agronomic and yield selection of doubled haploid lines of rainfed lowland rice in advanced yield trials. Biodiversitas 22 (7): 3006-3012. DOI: 10.13057/biodiv/d220754.
Al-Daej MI. 2022. Estimation of heterosis, heritability and genetic parameters for some agronomic traits of rice using the line × tester method. J King Saud Univ Sci 34 (4): 101906. DOI: 10.1016/j.jksus.2022.101906.
Bai F, Ma H, Cai Y, Shahid MQ, Zheng Y, Lang C, Chen Z, Wu J, Liu X, Wang L. 2023. Natural allelic variation in grain size and weight 3 of wild rice regulates the grain size and weight. Plant Physiol 193 (1): 502-518. DOI: 10.1093/plphys/kiad320.
Bradshaw JE. 2022. Breeding diploid F1 hybrid potatoes for propagation from Botanical Seed (TPS): Comparisons with theory and other crops. Plants 11 (9): 1121. DOI: 10.3390/plants11091121.
Brunet-Loredo A, López-Belchí MD, Cordero-Lara K, Noriega F, Cabeza RA, Fischer S, Careaga P, Garriga M. 2023. Assessing grain quality changes in white and black rice under water deficit. Plants 12 (24): 4091. DOI: 10.3390/plants12244091.
Cañizares L, Meza S, Peres B, Rodrigues L, Jappe SN, Coradi PC, de Oliveira M. 2024. Functional foods from black rice (Oryza sativa L.): An overview of the influence of drying, storage, and processing on bioactive molecules and health-promoting effects. Foods 13 (7): 1088. DOI: 10.3390/foods13071088.
Dadlani M, Yadava DK. 2023. Seed Science and Technology: Biology, Production, Quality. Springer, Singapore. DOI: 10.1007/978-981-19-5888-5.
Fanata WID, Husna SF. 2021. Penentuan sifat aromatik beberapa varietas padi lokal berdasarkan analisis fenotip dan DNA molekuler. Jurnal Ilmu Dasar 22 (2): 111-118. [Indonesian]
Fanata WID, Sholikhah U, Ratnasari T, Tanzil AI, Handoyo T. 2024. Agronomic characteristics of F1 rice from crossing aromatic rice with local rice varieties. Proceedings of the 2nd International Conference on Neural Networks and Machine Learning 2023 (ICNNML 2023). Jember University, Jember, 7-8 November 2023. DOI: 10.2991/978-94-6463-445-7_24.
Fatchiyah, Sari DRT, Safitri A, Cairns, JRK. 2020. Phytochemical compound and nutritional value in black rice from Java Island, Indonesia. Multifaceted Rev J Field Pharm 11 (7): 414-421. DOI: 10.31838/srp.2020.7.61.
Fathima MA, Geetha S, Hemalatha M, Amudha K, Lekshmi LA, Ariharasutharsan G, Devasena N, Uma D. 2022. Identification and validation of genetic locus linked to flavonoid and anthocyanin content in rice using bulk segregant analysis. Indian J Genet Plant Breed 82 (3): 299-303. DOI: 10.31742/ISGPB.82.3.4.
Huang L, Hua K, Xu R et al. 2021. The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice. Plant Cell 33 (4): 1212-1228. DOI: 10.1093/plcell/koab041.
IRRI [International Rice Research Institute]. 2013. Standard Evaluation System for Rice (SES). International Rice Research Institute, Manila, Philippines.
Ishak, Fedora F. 2024. Selection of rice aroma from crossing aromatic rice x T250.7 mutant genotype using DNA marker. Biodiversitas 25 (5): 2191-2197. DOI: 10.13057/biodiv/d250537.
Kasim N, Widiayani N, Revaldi A. 2020. Growth and production of sixth generation of brown rice mutants in a high altitude location. IOP Conf Ser: Earth Environ Sci 575: 012149. DOI: 10.1088/1755-1315/575/1/012149.
Kristamtini K, Taryono T, Basunanda P, Murti RH. 2018. Use of microsatellite markers to detect heterozygosity in an F2 generation of a black rice and white rice cross. Indones J Biotechnol 23 (1): 28-34. DOI: 10.22146/ijbiotech.33111.
Li G, Tang J, Zheng J, Chu C. 2021. Exploration of rice yield potential: Decoding agronomic and physiological traits. Crop J 9 (3): 577-589. DOI: 10.1016/j.cj.2021.03.014.
Nandariyah, Sukaya, Purnomo D, Sutarno, Yuniastuti E, Az-Zahra CDA. 2023. Study of black rice parents performance and the crossing ability. Caraka Tani: J Sustain Agric 38 (1): 65-74. DOI: 10.20961/carakatani.v38i1.60245.
Oikawa T, Maeda H, Oguchi T, Yamaguchi T, Tanabe N, Ebana K, Yano M, Ebitani T, Izawa T. 2015. The birth of black rice gene and its local spread by introgression. Plant Cell 27 (9): 2401-2414. DOI: 10.1105/tpc.15.00310.
Panda DK, Jyotirmayee B, Mahalik G. 2022. Black rice: A review from its history to chemical makeup to health advantages, nutritional properties and dietary uses. Plant Sci Today 9: 1-15. DOI: 10.14719/pst.1817.
Pang Y, Ahmed S, Xu Y, Beta T, Zhu Z, Shao Y, Bao J. 2018. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chem 240: 212-221. DOI: 10.1016/j.foodchem.2017.07.095.
Patil HE. 2021. Reproductive biology, breeding behaviour, emasculation, pollination techniques and hybridization in little millet (Panicum sumatrense L.). Pharm Innov J 10 (11): 1153-1159.
Prasad BJ, Sharavanan PS, Sivaraj R. 2019. RETRACTED: Health benefits of black rice - a review. Grain Oil Sci Technol 2 (4): 109-113. DOI: 10.1016/j.gaost.2019.09.005.
Rahim MA, Umar M, Habib A et al. 2022. Photochemistry, functional properties, food applications, and health prospective of black rice. J Chem 2022 (1): 2755084. DOI: 10.1155/2022/2755084.
Renuprasath P, Ganesan NM, Bama KS, Boominathan P, Suresh R. 2023. Variability and association analysis for yield and yield contributing traits in early segregating backcross population in rice (Oryza sativa L.). Pharm Innov J 12 (2): 3218-3222.
Savitha P, Jeyaprakash P, Akilan M, Geethanjali S. 2023. Mapping and validating Quantitative Trait Loci (QTL) for anthocyanin-related genes, coupled with marker analysis for pericarp pigmentation and yield traits in a black and white rice cross. Indian J Biochem Biophys 60 (12): 919-940. DOI: 10.56042/ijbb.v60i12.6956.
Sholikhah U, Parjanto, Handoyo T, Yunus A. 2019. Morphological characters of several black and aromatic rice (Oryza sativa L.) in Indonesia. AIP Conf Proc 2120: 030029. DOI: 10.1063/1.5115633.
Sholikhah U, Parjanto, Handoyo T, Yunus A. 2021. Anthocyanin content in some black rice cultivars. IOP Conf Ser: Earth Environ Sci 709: 012076. DOI: 10.1088/1755-1315/709/1/012076.
Shrestha J, Subedi S, Kushwaha UKS, Maharjan B. 2021. Evaluation of rice genotypes for growth, yield and yield components. J Agric Nat Resour 4 (2): 339-346. DOI: 10.3126/janr.v4i2.33967.
Singh MK, Singh RP, Singh P, Singh RK, Srivastava RP. 2018. Reciprocal crosses in early maturing x high yielding rice (Oryza sativa L.) cultivars. J Pharmacogn Phytochem SP5: 50-55.
Utami DW, Kristamtini, Prajitno. 2009. Karakterisasi plasma nutfah padi beras merah lokal asal Provinsi Daerah Istimewa Yogyakarta berdasarkan karakter morfo-agronomi dan marka SSR. Zuriat 20 (1): 10-18. DOI: 10.24198/zuriat.v20i1.6644. [Indonesian]
Xia D, Zhou H, Wang Y, Li P, Fu P, Wu B, He Y. 2021. How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice. Crop J 9 (3): 598-608. DOI: 10.1016/j.cj.2021.03.013.
Yamuangmorn S, Prom-U-Thai C. 2021. The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants 10 (6): 833. DOI: 10.3390/antiox10060833.
Zhang H, Huang DR, Shen Y, Niu XJ, Fan YY, Zhang ZH, Zhuang JY, Zhu YJ. 2024. GL5.2, a quantitative trait locus for rice grain shape, encodes a RING-type E3 ubiquitin ligase. Plants 13 (17): 2521. DOI: 10.3390/plants13172521.

Most read articles by the same author(s)