Morphological and ultrastructure alteration of larva Culex pipiens exposed from cassava juice extract

##plugins.themes.bootstrap3.article.main##

MARIA NINDATU
HERY JOTLELY
YOFIAN ANAKTOTOTY
MILDA RIANTY LAKOAN

Abstract

Abstract. Nindatu M, Jotlely H, Anaktototy Y, Lakoan MR. 2025. Morphological and ultrastructure alteration of larva Culex pipiens exposed from cassava juice extract. Biodiversitas 26: 306-314. Culex pipiens Linnaeus, 1758 is a mosquito commonly often found in residential areas, particularly in puddles of water and storage tanks. This mosquito serves as a vector for lymphatic filariasis in humans, also known as elephantiasis. To eliminate the transmission of elephantiasis, control strategies one are implemented targeting the growth of C. pipiens larval population. Cassava tubers have the potential as a biolarvicide to control the population and growth of C. pipiens mosquito larvae. This research was aimed to determine the phytochemical content and biolarvicide effectiveness of juice extract cassava (Manihot esculenta Crantz), which may cause damage to the head capsule, thorax, and abdomen of C. pipiens larvae. Phytochemical test on the cassava tubers juice extract (M. esculenta) revealed relatively high levels of flavonoids, ranging from 3 to 3.5 mg. The results of identification using a keyence 3D microscope show the fourth instar larvae of C. pipiens in the control group. The body color is pale, and the head and tail are brownish. Squeezed biolarvicide cassava tubers (M. esculenta) doses of 0.5, 1.5, and 3.5% caused larval mortality above 90% at the 6th hour for 24 hours. Further characterization using Scanning Electron Microscopy (SEM) indicated that a dosage of 3.5% applied for 24 hours caused significant damage to the head capsule, with the exoskeleton connecting the head and thorax nearly detaching. Higher concentration of cassava juice extract resulted in increased body damage to C. pipiens larvae. It can be concluded that the flavonoid compounds in cassava juice extract in this study can effectively damage the bodies of fourth instar C. pipiens larvae, as evidenced by the SEM results.

##plugins.themes.bootstrap3.article.details##

References
REFERENCES
Alba-Tercedor J, Vílchez S. 2023. Anatomical damage caused by Bacillus thuringiensis variety israelensis in yellow fever mosquito Aedes aegypti (L.) larvae revealed by micro-computed tomography. Scientific Reports, 13. DOI:10.1038/s41598-023-35411-1.
Aly SH, Elissawy AM, Allam AE, Farag SM, Eldahshan OA, Elshanawany MA, Singab AN. 2021. New quinolizidine alkaloid and insecticidal activity of Sophora secundiflora and Sophora tomentosa against Culex pipiens (Diptera: Culicidae).Natural Products Research, 36,2722 – 2734. DOI:10.1080/14786419.2021.1919108.
Azmy R. 2021. eval_uation of the larvicidal activity of nanoemulsion from Citrus aurantifolia (Christm) Swingle peel on Culex pipiens L. (Diptera: Culicidae) and the induced morphological aberrations.Egyptian Journal of Aquatic Biology and Fisheries. DOI:10.21608/EJABF.2021.176475.
Azmy R, El Gohary EG, Salem DM, Abdou MA, Salama MS, Mahmoud DA. 2021. Biochemical and histopathological effects of the essential oil of Citrus sinensis (L.) Osbeck on larvae of Culex pipiens Linnaeus, 1758 (Diptera: Culicidae).Aquatic Insects, 42,78 - 90. DOI:10.1080/01650424.2020.1871025.
Badawy ME, Taktak NE, El-Aswad AF. 2018. Chemical composition of the essential oils isolated from peel of three citrus species and their mosquitocidal activity against Culex pipiens.Natural Products Research, 32,2829 - 2834. DOI:10.1080/14786419.2017.1378216.
Baz MM, Selim AM, Radwan IT, Alkhaibari AM, Khater HF. 2022. Larvicidal and adulticidal effects of some Egyptian oils against Culex pipiens.Scientific Reports, 12.DOI:10.1038/s41598-022-08223-y.
Dass K, Mariappan P. 2016. Larvicidal activity of Colocasia esculenta, Eclipta prostrata and Wrightia tinctoria leaf extract against Culex quinquefasciatus. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 86, 139-143. DOI: DOI:10.1007/s40011-014-0423-7.
Dass K. 2020. Larvicidal and pupicidal activity of green synthesized silver nanoparticles using selected plant extract against Culex quinquefasciatus. Corpus ID: 238874841.
Dhimal M, Ahrens B, Kuch U. 2014. Species composition, seasonal occurrence, habitat preference and altitudinal distribution of malaria and other disease vectors in eastern Nepal. Parasites Vectors 7(1): 1-11. DOI: 10.1186/s13071-014-0540-4.
Maluku Provincial Health Service, 2024.Data on Filariasis in Maluku in 2024. Directorate General of PP & PL Ambon, Indonesian Ministry of Health.
Dris D, Tine-Djebbar F, Bouabida, H, Soltani N. 2017. Chemical composition and activity of an Ocimum basilicum essential oil on Culex pipiens larvae: Toxicological, biometrical and biochemical aspects.South African Journal of Botany, 113,362-369.
El-Akhal F, Ramzi A, Farah A, Ez zoubi Y, Benboubker M, Taghzouti K, El Ouali Lalami A. 2021. Chemical Composition and Larvicidal Activity of Lavandula angustifolia Subsp. angustifolia and Lavandula dentata Spp. dentata Essential Oils against Culex pipiens Larvae, Vector of West Nile Virus.Psyche: A Journal of Entomology, 2021,1-7. DOI:10.1155/2021/8872139.
El-Monairy OM. 2015. Efficiency of Colocasia esculenta leaves extract and histopathological effects on Culex pipiens (Diptera: Culicidae). Journal of the Egyptian Society of Parasitology, 45 1, 85-92. DOI:10.12816/0010853.
El-Sabrout AM, Salem MZ, Bin-Jumah MN, Allam AA. 2019. Toxicological Activity of Some Plant Essential Oils Against Tribolium castaneum and Culex pipiens Larvae. DOI:10.3390/pr7120933.
Emam MA, Abdel-Haleem DR, Farag SM, El-Ansari MA, Sobeh M. 2021. Larvicidal Activity of Pentagalloyl Glucose and Mangiferin Isolated from the Waste of Mango Kernel Against Culex pipiens L.Waste and Biomass Valorization, 13,83-93. DOI:10.1007/s12649-021-01532-9.
Fachriyah E, Haryanto IB, Kusrini D, Sarjono PR, Ngadiwiyana N. 2022. Antioxidant Activity of Flavonoids from Cassava Leaves (Manihot esculenta Crantz). Journal of Chemical Science and Applications. DOI:10.14710/jksa.26.1.10-18.
Gohary E, Farag SM, El-Sayed AA, Khattab RR, Mahmoud DA. 2021. Insecticidal Activity and Biochemical Study of the Clove Oil (Syzygium aromaticum) Nano- Formulation on Culex pipiens L. (Diptera: Culicidae).Egyptian journal of aquatic biology and fisheries, 25,227-239. DOI:10.21608/EJABF.2021.137233.
Gyapong JO, Owusu IO, da-Costa Vroom FB, Mensah EO, Gyapong M. 2018. Elimination of lymphatic filariasis: current perspectives on mass drug administration. Research and Reports in Tropical Medicine, 9, 25 - 33. DOI:10.2147/RRTM.S125204.
Hasmiwati, Rusjdi SR, Nofita E. Detection of ace-1 gene with insecticide resistance in aedes aegypti populations from DHF-endemic areas in Padang, Indonesia. Biodiversity. 2018 Jan 1;19(1):31–6. DOI:10.13057/BIODIV/D190105.
Hossain R, Shahidullah, Banu NN, Jewel MH. 2014. Identification of Mosquito Species In Dhaka Cantonment. J. Asiat. Soc. Bangladesh. Sci. 40(2): 243-248. DOI:10.3329/jasbs.v40i2.46022.
Ministry of Health of the Republic of Indonesia (Kemenkes RI). 2023. Indonesia Health Profile 2023. Jakarta (ID): Ministry of Health of the Republic of Indonesia.
Kharoubi R, Rehimi N, Soltani N. 2020. Essential oil from Mentha rotundifolia harvested in Northeast Algeria: Chemical Composition, Larvicidal and Enzymatic Activities on Culex pipiens larvae.Transylvanian Review.Corpus ID: 219656569.
Kelly PH, Yingling AV, Ahmed A, Hurwitz I, Ramalho-Ortigao M. 2022. Defining the mechanisms of action and mosquito larva midgut response to a yeast-encapsulated orange oil larvicide. Parasites & Vectors, 15. DOI:10.1186/s13071-022-05307-6.
Kioulos I, Michaelakis A, Kioulos N, Samanidou- ?Voyadjoglou A, Koliopoulos G. 2014. Mosquito (Diptera: Culicidae) fauna in natural breeding sites of Attica basin, Greece. Hellenic Plant Protection Journal, 7, 31-34. Corpus ID: 85922199.
Kishore N, Mishra BB, Tiwari VK, Tripathi, V, Lall N. 2014. Natural products as leads to potential mosquitocides. Phytochemistry Reviews, 13, 587-627. DOI:10.1007/s11101-013-9316-2.
Kumar S, Srivastava SK. 2023. Mosquito Larvicidal Effects of 33 Plants Aqueous Extracts of 14 Different Plants Against Larvae of Culex Mosquito. International Journal for Research in Applied Science & Engineering Technology (IJRASET). DOI:10.22214/ijraset.2023.49438.
Linn KZ, Myint PP. 2018. Estimation of nutritive value of total phenolic content and in vitro antioxidant activity of Manihot esculenta Crantz. (Cassava) leaf. Agricultural and Food Sciences, Environmental Science. Corpus ID: 201762712.
Meliyanie G, Andiarsa D. 2017. Lymphatic filariasis elimination program in Indonesia. Journal of Health Epidemiology and Communicable Diseases, 3(2), 63-70. DOI:10.22435/jhecds.v3i2.7708.63-70.
Mondal A, Hajra A, Shaikh WA, Chakraborty S, Mondal NK. 2019. Synthesis of silver nanoparticles with Colocasia esculenta (L.) stem and its larvicidal activity against Culex quinquefasciatus and Chironomus sp. Asian Pacific Journal of Tropical Biomedicine, 9, 510 - 517. DOI: 10.4103/2221-1691.271724.
Nenaah GE, Almadiy AA, Al-Assiuty BA, Mahnashi MH. 2021. The essential oil of Schinus terebinthifolius and its nanoemulsion and isolated monoterpenes: Investigation of their activity against Culex pipiens with insights into the adverse effects on non-target organisms.Pest management science.DOI:10.1002/ps.6715.
Pantelias A, King JD, Lammie PJ, Weil GJ. 2022. Development and Introduction of the Filariasis Test Strip: A New Diagnostic Test for the Global Program to Eliminate Lymphatic Filariasis. The American Journal of Tropical Medicine and Hygiene, 106, 56 - 60. DOI:10.4269/ajtmh.21-0990.
Parle E, Dirks J, Taylor D. 2017. Damage, repair and regeneration in insect cuticle: The story so far, and possibilities for the future. Arthropod structure & development, 46 1, 49-55. DOI:10.1016/j.asd.2016.11.008.
Phillips BM, Anderson BS, Voorhees JP, Siegler K, Denton DL, Tenbrook PL, Larsen K, Isorena P, Tjeerdema RS. 2014. Monitoring the aquatic toxicity of mosquito vector control spray pesticides to freshwater receiving waters. Integrated Environmental Assessment and Management, 10. DOI:10.1002/ieam.1534.
Qasim M, Naeem M, Bodlah I. 2014. Mosquito (Diptera: Culicidae) of Murree Hills, Punjab, Pakistan. Pakistan Journal of Zoology, 46, 523-529. DOI:10.3329/jasbs.v40i2.46022.
Rants'o TA, Koekemoer LL, Panayides JL, van Zyl RL 2020.. Potential of essential oilbased anticholinesterase insecticides against Anopheles vectors: A review. Molecules. 1:27(20). DOI:10.3390/molecules27207026.
Samy AM, Samy AM, Elaagip A, Kenawy MA, Ayres CF, Peterson AT, Soliman DE. 2016. Climate Change Influences on the Global Potential Distribution of the Mosquito Culex quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis. PLoS ONE, 11. DOI:10.1371/journal.pone.0163863.
Selim, T, Abd-El Rahman IE, Mahran HA, Adam H, Imieje VO, Zaki AA, Bashar MA, Hwihy HM, Hamed A, Elhenawy AA, Abou- ?Amra E, El-Didamony SE, Hasaballah AI. 2022. Mosquitocidal Activity of the Methanolic Extract of Annickia chlorantha and Its Isolated Compounds against Culex pipiens, and Their Impact on the Non-Target Organism Zebrafish, Danio rerio.Insects, 13.DOI:10.3390/insects13080676.
Smith ME, Newcomb K, Otano YA, Michael E. 2023. A hierarchical model-based framework for eval_uating probabilities of area-wide freedom from lymphatic filariasis infection based on sentinel site surveillance data. Frontiers in Tropical Diseases. DOI:10.3389/fitd.2023.1233763.
Zahran NF, Sawires S, Hamza AF. 2022. Piercing and sucking mouth parts sensilla of irradiated mosquito, Culex pipiens (Diptera: Culicidae) with gamma radiation. Scientific Reports, 12. DOI:10.1038/s41598-022-22348-0.