Chemical composition, in vitro rumen profile and methane emission of fermented and non-fermented grass-legume mixtures

##plugins.themes.bootstrap3.article.main##

VITA APRIANI
YULIANRI RIZKI YANZA
WULANSIH DWI ASTUTI
VINCENT NIDERKORN
RIMA S. H. MARTIN
JIDAN RAMADANI
WELAS SRI MULYATI
ANURAGA JAYANEGARA

Abstract

Abstract. Apriani V, Yanza YR, Astuti WD, Niderkorn V, Martin RSH, Ramadani J, Mulyati WS, Jayanegara A. 2025. Chemical composition, in vitro rumen profile and methane emission of fermented and non-fermented grass-legume mixtures. Biodiversitas 26: 869-878. This study aimed to evaluate the impact of several grass-legume mixtures, either fermented or non-fermented, on chemical composition, in vitro rumen fermentation profiles, and gas and methane production kinetics. Seven tropical leguminous plants were investigated, i.e., Indigofera zollingeriana, Calliandra calothyrsus, Clitoria ternatea, Centrosema pubescens, Leucaena leucocephala, Bauhinia purpurea, and Arachis pintoi. Each legume was combined with Pennisetum purpureum (elephant grass) in a 50:50 ratio, prepared in both fresh (non-fermented) and fermented (silage) forms. A completely randomized factorial design was employed, with legume type as the primary factor and fermentation status (non-fermented vs fermented) as the secondary factor (N = 5 replicates per treatment). Results revealed that legume type significantly influenced (P<0.05) In Vitro Dry Matter Digestibility (IVDMD) and In Vitro Organic Matter Digestibility (IVOMD), with I. zollingeriana demonstrating the highest digestibility values. A significant interaction between fermentation and legume type was observed in reducing methane gas production (P<0.05). Both legume inclusion and fermentation effectively lowered methane emissions (P<0.05), with the lowest levels recorded for C. calothyrsus and B. purpurea. The study concluded that incorporating tropical legumes, in both fermented and non-fermented forms, into elephant grass can improve digestibility and mitigate methane emissions, with Indigofera and Calliandra showing the most promising results, respectively.

##plugins.themes.bootstrap3.article.details##

References
Abdullah L. 2010. Herbage production and quality of shrub Indigofera treated by different concentration of foliar fertilizer. Media Peternakan 33 (3): 169-169. DOI: 10.5398/medpet.2010.33.3.169.
Ahmed M, Al?Sagheer A, El-Waziry A, El-Zarkouny S, Elwakeel E. 2023. Ensiling characteristics, in vitro rumen fermentation patterns, feed degradability, and methane and ammonia production of berseem (Trifolium alexandrinum L.) co-ensiled with artichoke bracts (Cynara cardunculus L.). Animals 13 (9): 1543. DOI: 10.3390/ani13091543.
Alayón JA, Albores-Moreno S, Jiménez-Ferrer G, Alarcón-Zúñiga B, Miranda-Romero LA, Pérez-Luna EJ, Canul-Solís J. 2023. Tropical tree foliage supplementation in ruminants improves rumen fermentation and the bacterial profile and decreases methane production. Anim Biotechnol 34: 4510-4522. DOI: 10.1080/10495398.2023.2165935.
AOAC [Association of Official Analytical Chemists]. 2005. Official Methods of Analysis (18th ed). Association of Official Analytical Chemists, Gaithersburg, MD, USA.
Aragadvay-Yungán RG, Barros-Rodríguez,M, Ortiz L, Carro MD, Navarro Marcos C, Elghandour MMMY, Salem AZM. 2022. Mitigation of ruminal methane production with enhancing the fermentation by supplementation of different tropical forage legumes. Environ Sci Pollut Res 29 (3): 3438-3445. DOI: 10.1007/s11356-021-15749-7.
Atmojo FA, Suhartanto B, Zulfa IH, Kustantinah K. 2020. Evaluation use of Calliandra calothyrsus substituted soybean meal supplement on feed nutrient intake and digestibility in the Kacang goat. Key Eng Mater 840: 107-112. DOI: 10.4028/www.scientific.net/KEM.840.107.
Auerbach H, Nadeau E. 2020. Effects of additive type on fermentation and aerobic stability and its interaction with air exposure on silage nutritive value. Agronomy 10: 1229. DOI: 10.3390/agronomy10091229.
Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López, S. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animl Feed Sci Technol 176 (1-4): 78-93. DOI: 10.1016/j.anifeedsci.2012.07.010.
Bueno IC, Brandi RA, Franzolin R, Benetel G, Fagundes GM, Abdalla AL, Louvandini H, Muir JP. 2015. In vitro methane production and tolerance to condensed tannins in five ruminant species. Anim Feed Sci Technol 205: 1-9. DOI: 10.1016/j.anifeedsci.2015.03.008.
Cieslak A, Szumacher-Strabel M, Stochmal A, Oleszek W. 2013. Plants components with specific activities against rumen methanogens. Animal 7: 253-265. DOI: 10.1017/S1751731113000852.
Cui X, Sun H, Wen X, Sobhi M, Guo J, Dong R. 2020. Urea-assisted ensiling process of wilted maize stover for profitable biomethane production. Sci Tot Environ 757: 143751. DOI: 10.1016/j.scitotenv.2020.143751.
Danielsson R, Dicksved J, Sun L, Gonda H, Müller B, Schnürer A, Bertilsson J. 2017. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front Microbiol 8: 226. DOI: 10.3389/fmicb.2017.00226.
Darma ING, Jayanegara A, Sofyan A, Budiartilaconi E, Ridla M, Herdian H. 2023. Evaluation of nutritional values of tree-forage legume leaves from Gunungkidul District, Indonesia. Biodiversitas 24 (5): 2733-2745. DOI: 10.13057/biodiv/d240527.
Dewhurst RJ, Evans RT, Scollan ND, Moorby JM, Merry R J, Wilkins RJ. 2003. Comparison of grass and legume silages for milk production. 2. In vivo and in sacco evaluations of rumen function. J Dairy Sci 86 (8): 2612-2621. DOI: 10.3168/jds.S0022-0302(03)73856-9.
Dos Santos WCC, do Nascimento WG, Magalhães ALR, Silva DKA, Silva WJCS, Santana AVS, Soares GSC. 2015. Nutritive value, total losses of dry matter and aerobic stability of the silage from three varieties of sugarcane treated with commercial microbial additives. Anim Feed Sci Technol 204: 1-8. DOI: 10.1016/j.anifeedsci.2015.03.004.
Franco M, Rinne M. 2023. Dry matter content and additives with different modes of action modify the preservation characteristics of grass silage. Fermentation 9 (7): 640. DOI: 10.3390/fermentation9070640.
Gomes FM, Ribeiro KG, De Souza IA, de Lima Silva J, Agarussi MCN, Da Silva VP, Da Silva TC. Pereira OG. 2021. Chemical composition, fermentation profile, microbial population and dry matter recovery of silages from mixtures of palisade grass and forage peanut. Trop Grassland-Forrajes 9 (1): 34-42. DOI: 10.17138/tgft(9)34-42.
Hassan FU, Arshad MA, Ebeid HM, Rehman MSU, Khan MS, Shahid S, Yang C. 2020. Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet-microbe interaction. Front Vet Sci 7: 575801. DOI: 10.3389/fvets.2020.575801.
Hill J, McSweeney C, Wright A, Bishop-Hurley G, Kalantar-zadeh K. 2016. Measuring methane production from ruminants. Trends Biotech 34 (1): 26-35. DOI: 10.1016/j.tibtech.2015.10.004.
Htay TM, Sann KK, Haini H. 2023. Comparative study on phytochemical screening and antioxidant activity of aqueous extract from various parts of Bauhinia purpurea. Bioactivities 1 (1): 24-31. DOI: 10.47352/bioactivities.2963-654X.183.
Ineichen S, Seiler AB, Wyss U, Malisch CS, Reidy B. 2023. Ensilibility and protein degradation characteristics of forage from mountain grasslands containing tanniferous species. Grass Forage Sci 78 (4): 622-635. DOI: 10.1111/gfs.12620.
Jayanegara A, Goel G, Makkar HP, Becker K. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim Feed Sci Technol 209: 60-68. DOI: 10.1016/j.anifeedsci.2015.08.002.
Jayanegara A, Yogianto Y, Wina E, Sudarman A, Kondo M, Obitsu T, Kreuzer M. 2020. Combination effects of plant extracts rich in tannins and saponins as feed additives for mitigating in vitro ruminal methane and ammonia formation. Animals 10: 1531. DOI: 10.3390/ani10091531.
Kondo M, Hirano Y, Kita K, Jayanegara A, Yokota HO. 2014. Fermentation characteristics, tannin contents and in vitro ruminal degradation of green tea and black tea by-products ensiled at different temperatures. Asian-Australas J Anim Sci 27: 937-945. DOI: 10.5713/ajas.2013.13387.
Ku-Vera J, Jiménez-Ocampo R., Valencia-Salazar S, Montoya-Flores M, Molina-Botero I, Arango J, Gómez-Bravo C, Aguilar-Pérez C, Solorio-Sánchez F. 2020. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front Vet Sci 7: 584. DOI: 10.3389/fvets.2020.00584.
Lee MRF, Fychan R, Tweed JK, Gordon N, Theobald V, Yadav R, Marshall A. 2019. Nitrogen and fatty acid rumen metabolism in cattle offered high or low polyphenol oxidase red clover silage. Animal 13 (8): 1623-1634. DOI: 10.1017/S1751731118003294.
Lee MRF. 2014. Forage polyphenol oxidase and ruminant livestock nutrition. Front Plant Sci 5: 694. DOI: 10.3389/fpls.2014.00694.
Li R, Teng Z, Lang C, Zhou H, Zhong W, Ban Z, Yan X, Yang H, Farouk M, Lou Y. 2019. Effect of different forage-to-concentrate ratios on ruminal bacterial structure and real-time methane production in sheep. PLoS One 14 (5): e0214777. DOI: 10.1371/journal.pone.0214777.
Niderkorn V, Jayanegara A. 2021. Opportunities offered by plant bioactive compounds to improve silage quality, animal health and product quality for sustainable ruminant production: A review. Agronomy 11 (1): 86. DOI: 10.3390/agronomy11010086.
Ørskov ER, McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to the rate of passage. J Agric Sci 92 (2): 499-503. DOI: 10.1017/S0021859600063048.
Pal K, Patra A, Sahoo A. 2015. Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro. Spanish J Agric Res 13: 0608. DOI: 10.5424/SJAR/2015133-7467.
Parastiwi HA, Lestari NSH, Yanza YR, Niderkorn V, Ridwan R, Jayanegara A. 2023. Estimating nutrient composition and polyphenol concentration using Near-Infrared Spectroscopy (NIRS) in tropical forages. Biodiversitas 24: 6652-6660. DOI: 10.13057/biodiv/d241227.
Pu X, Zhang X, Yi S, Wang R, Li Q, Zhang W, Qu J, Huo J, Lin B, Tan B, Tan Z, Wang M. 2023. Mixed ensiling plus nitrate destroy fiber structure of rape straw, increase degradation and reduce methanogenesis through in vitro ruminal fermentation. J Sci Food Agric 104 (6): 3428-3436. DOI: 10.1002/jsfa.13228.
Rahmat SFI, Permana IG. 2021. Rumen degradation properties of tropical legumes feed under in sacco studies. IOP Conf Ser: Earth Environ Sci 888: 012071. DOI: 10.1088/1755-1315/888/1/012071.
Ridla M, Asikin N, Jayanegara A, Samsudin AA. 2023. Mitigating methane emissions for rural tropical livestock through selecting appropriate grass types. Livest Res Rur Dev 35 (7): 1-6.
Rimbawanto EA, Yusiati LM, Baliarti E, Utomo R. 2015. Effect of condensed tannin of Leucaena and Calliandra leaves in protein trash fish silage on in vitro ruminal fermentation, microbial protein synthesis and digestibility. Anim Prod 17: 83-91. DOI: 10.20884/1.anprod.2015.17.2.505.
Rira M, Morgavi DP, Popova M, Maxin G, Doreau M. 2022. Microbial colonisation of tannin-rich tropical plants: Interplay between degradability, methane production and tannin disappearance in the rumen. Animal 16 (8): 100589. DOI: 10.1016/j.animal.2022.100589.
Samal I, Bhoi TK, Raj MN, Majhi PK, Murmu S, Pradhan AK, Kumar D, Paschapur AU, Joshi DC, Guru, PN. 2023. Underutilized legumes: nutrient status and advanced breeding approaches for qualitative and quantitative enhancement. Front Nutr 10: 1110750. DOI: 10.3389/fnut.2023.1110750.
Santoso B, Widayati TW, Hariadi BT. 2020. Improvement of fermentation and the in vitro digestibility characteristics of agricultural waste-based complete feed silage with cellulase enzyme treatment. Adv Anim Vet Sci 8 (8): 873-881. DOI: 10.17582/journal.aavs/2020/8.8.873.881.
Schnaider MA, Ribeiro HMN, Kozloski GV, Reiter T, Orsoletta ACD, Dallabrida AL. 2014. Intake and digestion of wethers fed with dwarf elephant grass hay with or without the inclusion of peanut hay. Trop Anim Health Prod 46: 975-980. DOI: 10.1007/s11250-014-0594-5.
Schuba J, Südekum KH, Pfeffer E, Jayanegara A. 2017. Excretion of faecal, urinary urea and urinary non-urea nitrogen by four ruminant species as influenced by dietary nitrogen intake: A meta-analysis. Livest Sci 198: 82-88. DOI: 10.1016/j.livsci.2017.01.017.
Shoe HMN, Hai JB, Bo PT, Gong XW, Liu CJ, Dang K, Tian LX, Soomro RN, Aung KL, Feng BL. 2021. Evaluation of nutritive values through comparison of forage yield and silage quality of mono-cropped and intercropped maize-soybean harvested at two maturity stages. Agriculture 11 (5): 452. DOI: 10.3390/agriculture11050452.
Silva VP, Almeida FQD, Morgado EDS, Rodrigues LM, Santos TMD, Ventura HT. 2010. In situ caecal degradation of roughages in horses. Rev Bras Zootec 39: 349-355. DOI: 10.1590/S1516-35982010000200018.
Soltan YA, Morsy AS, Sallam SMA, Louvandini H, Abdalla AL. 2012. Comparative in vitro evaluation of forage legumes (Prosopis, Acacia, Atriplex, and Leucaena) on ruminal fermentation and methanogenesis. J Anim Feed Sci 21: 759-772. DOI: 10.22358/jafs/66148/2012.
So?ta M, Rekiel A, So?ta M. 2020. Legumes - use for nutritional and feeding purposes. J Elementol 25 (3): 835-849. DOI: 10.5601/jelem.2020.25.1.1953.
Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 48: 185-197. DOI: 10.1016/0377-8401(94)90171-6.
Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74 (10): 3583-3597. DOI: 10.3168/jds.S0022-0302(91)78551-2.
Voisin AS, Guéguen J, Huyghe C, Jeuffroy MH, Magrini MB, Meynard JM, Mougel C, Pellerin S, Pelzer E. 2014. Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agronom Sustain Develop 34: 361-380. DOI: 10.1007/s13593-013-0189-y.
Xia GH, Wu CR, Zhang MZ, Yang F, Chen C, Hao J. 2023. The metabolome and bacterial composition of high-moisture Italian ryegrass silage inoculated with lactic acid bacteria during ensiling. Biotech Biof Biop 16 (1): 91. DOI: 10.1186/s13068-023-02346-8.
Xue Z, Wang Y, Yang H, Li S, Zhang, Y. 2020. Silage fermentation and in vitro degradation characteristics of orchardgrass and alfalfa intercrop mixtures as influenced by forage ratios and nitrogen fertilizing levels. Sustainability 12: 871. DOI: 10.3390/su12030871.
Yáñez-Ruiz DR, Bannink A, Dijkstra J, Kebreab E, Morgavi DP, O’Kiely P, Reynolds CK, Schwarm A, Shingfield KJ, Yu Z, Hristov AN. 2016. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants - a review. Anim Feed Sci Technol 216: 1-18. DOI: 10.1016/j.anifeedsci.2016.03.016.
Yanza YR, Fitri A, Suwignyo B, Elfahmi, Hidayatik N, Kumalasari NR, Irawan A, Jayanegara A. 2021. The utilisation of tannin extract as a dietary additive in ruminant nutrition: A meta-analysis. Animals 11: 3317. DOI: 10.3390/ani11113317.
Yusiati LM, Kurniawati, A, Hanim C, Anas DM. 2018. Protein binding capacity of different forages tannin. IOP Conf Ser: Earth Environ Sci 11: 012007. DOI: 10.1088/1755-1315/119/1/012007.
Zain M, Despal, Tanuwiria UH, Pazla R, Putri EM and Amanah U. 2023. Evaluation of legumes, roughages, and concentrates based on chemical composition, rumen degradable and undegradable proteins by in vitro method. J Vet Sci 12: 528-538. DOI: 10.47278/journal.ijvs/2022.218.
Zakaria ZA, Abdul Hisam EE, Rofiee MS, Norhafizah M, Somchit MN, Teh LK, Salleh MZ. 2011. In vivo antiulcer activity of the aqueous extract of Bauhinia purpurea leaf. J Ethnopharmacol 137 (2): 1047-1054. DOI: 10.1016/j.jep.2011.07.038.
Zhao J, Dong Z, Li J, Chen L, Bai Y, Jia Y, Shao T. 2018. Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage. Asian-Australas J Anim Sci 32: 783-791. DOI: 10.5713/ajas.18.0543.

Most read articles by the same author(s)