Construction of a CRISPR/Cas9-mediated genome editing system in manipulating OsART1 from Oryza sativa cv. Inpago 5

##plugins.themes.bootstrap3.article.main##

MIFTAHUL HUDA FENDIYANTO
EKO SETIAWAN
MENTARI PUTRI PRATAMI
IFAN RIZKY KURNIYANTO
FANDRI SOFIANA FASTANTI

Abstract

Abstract. Fendiyanto MH, Setiawan E, Pratami MP, Kurniyanto IR, Fastanti FS. 2025. Construction of a CRISPR/Cas9-mediated genome editing system in manipulating OsART1 from Oryza sativa cv. Inpago 5. Biodiversitas 26: 920-927. Understanding the mechanism of aluminum (Al) tolerance in rice (Oryza sativa) cv. Inpago 5 can be done by mutating the ART1 gene to see which Al tolerance genes have decreased expression globally. This study aimed to construct a pRGEB32 vector containing sgRNA-ART1 derived from rice cv. Inpago 5. The construction of the pRGEB32-sgART1 vector was carried out by designing sgRNA, restriction-ligation, transformation, plasmid isolation, verification of target inserts, and sequencing of sgRNA-ART1. The results indicate that the construction of the recombinant vector pRGEB32-sgRNAART1 was carried out by combining digestion and ligase reactions. The construction of the recombinant pRGEB32 construction showed a high level of success in this study. The success of the ART1 sgRNA amplicon in recombinant Escherichia coli indicated this. Annotation studies showed that the pRGEB32 cassette plasmid sequence showed more than 99% homology with the recombinant pRGEB32-sgART1 sequence, especially only 1% was different, namely 20 bp of sgRNA that appeared different. After checking with alignment on the plasmid annotation using the MAAFT alignment method, it was found that 20 bp of ART1 sgRNA was successfully inserted into the pRGEB32-sgART1 recombinant vector. In conclusion, the construction of pRGEB32-sgART1 in this study was successful and showed the presence of a 425 bp band amplicon for the insertion from the region between M13 reverse and sgRNA-ART1.

##plugins.themes.bootstrap3.article.details##

References
Adamowski M, Friml J. 2015. PIN-dependent auxin transport: Action, regulation, and evolution. Plant Cell 27 (1): 20-32. DOI: 10.1105/tpc.114.134874.
Agarwal PK, Agarwal P, Reddy MK, Sopory SK. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25: 1263-1274. DOI: 10.1007/s00299-006-0204-8.
Arbelaez JD, Maron LG, Jobe TO, Pineros MA, Famoso AN, Rebelo AR, Singh N, Ma QY, Fei ZJ, Kochian LV, McCouch SR. 2017. Aluminum Resistance Transcription Factor 1 (ART1) contributes to natural variation in aluminum resistance in diverse genetic backgrounds of rice (O. sativa). Plant Direct 1 (4): e00014. DOI: 10.1002/pld3.14.
Arenhart RA, Bai Y, de Oliveira LF, Neto LB, Schunemann M, Maraschin-Fdos S, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY, Margis-Pinheiro M. 2014. New insights into aluminum tolerance in rice: The ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Mol Plant 7 (4): 709-721. DOI: 10.1093/mp/sst160.
Arenhart RA, Schunemann M, Bucker Neto L, Margis R, Wang ZY, Margis-Pinheiro M. 2016. Rice ASR1 and ASR5 are complementary transcription factors regulating aluminum-responsive genes. Plant Cell Environ 39 (3): 645-651. DOI: 10.1111/pce.12655.
Awasthi JP, Saha B, Panigrahi J, Yanase E, Koyama H, Panda SK. 2019. Redox balance, metabolic fingerprint, and physiological characterization in contrasting North East Indian rice for aluminum stress tolerance. Sci Rep 9 (1): 8681. DOI: 10.1038/s41598-019-45158-3.
Bai B, Bian HW, Zeng ZH, Hou N, Shi B, Wang JH, Zhu MY, Han N. 2017. miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol 58 (3): 426-439. DOI: 10.1093/pcp/pcw211.
Chan WT, Verma CS, Lane DP, Gan SK. 2013. A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci Rep 33: e00086. DOI: 10.1042/BSR20130098.
Che J, Tsutsui T, Yokosho K, Yamaji N, Ma JF. 2018. Functional characterization of an aluminum (Al)-inducible transcription factor, ART2, revealed a different pathway for Al tolerance in rice. New Phytol 220 (1): 209-218. DOI: 10.1111/nph.15252.
Chen J, Fan X, Qian K, Zhang Y, Song M, Liu Y, Xu G, Fan X. 2017. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnol J 15 (10): 1273-1283. DOI: 10.1111/pbi.12714.
Fan W, Lou HQ, Gong YL, Liu MY, Wang ZQ, Yang JL, Zheng SJ. 2014. Identification of early Al-responsive genes in rice bean (Vigna umbellata) roots provides new clues to molecular mechanisms of Al toxicity and tolerance. Plant Cell Environ 37 (7): 1586-1597. DOI: 10.1111/pce.12258.
Fendiyanto MH, Hastilestari BR, Maysha DJ. 2023. LCYB gene expression and morphophysiological traits of Musa acuminata cultivars. SABRAO J Breed Genet 55 (6): 1984-1993.
Fendiyanto MH, Satrio RD, Junaedi A, Supena EDJ, Hairmansis A, Nugroho S, Miftahudin M. 2024. Correlation and path analyses for shoot architecture, photosynthesis, and yield-related traits in recombinant inbred lines of rice. SABRAO J Breed Genet 56 (4): 1609-1620.
Fendiyanto MH, Satrio RD, Pratami MP, Nikmah IA, Sari NIP, Widana IDKK, Darmadi D. 2021. Analysis of superoxide dismutase (OsSOD) gene expression using qRT-PCR, its morphophysiological characters, and path analysis in rice variety IR64 under aluminum stress. Intl J Agric Biol 26: 546-554. DOI: 10.17957/IJAB/15.1866.
Fendiyanto MH, Satrio RD, Suharsono S, Tjahjoleksono A, Hanarida I, Miftahudin M. 2019b. QTL for aluminum tolerance on rice chromosome 3 based on root length characters. SABRAO J Breed Genet 51 (4): 451-469.
Fendiyanto MH, Satrio RD, Suharsono S, Tjahjoleksono A, Miftahudin M. 2019a. Correlation among Snpb11 markers, root growth, and physiological characters of upland rice under aluminum stress. Biodiversitas 20 (5): 1243-1254. DOI: 10.13057/biodiv/d200514.
Guo LB, Ye GY. 2014. Use of major quantitative trait loci to improve grain yield of rice. Rice Sci 21 (2): 65-82. DOI: 10.1016/S1672-6308(13)60174-2.
Halim I, Fendiyanto MH, Miftahudin M. 2021. sgRNA design for DLT gene editing using CRISPR-Cas9 and in-silico mutation prediction in Rice cv. Hawara Bunar. IOP Conf Ser Eart Environ Sci 948 (1): 012083. DOI: 10.1088/1755-1315/948/1/012083.
Hou L, Zhang X, Li Y, Chen S, Qu H, Yu J, Zhang L, Fan Z. 2016. Rapid screening of recombinant plasmids by direct colony quantitative real-time PCR. Adv Biosci Biotechnol 7 (10): 428-433. DOI: 10.4236/abb.2016.710041.
Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. 2017. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59 (2): 86-101. DOI: 10.1111/jipb.12513.
Jingguang C, Qi L, Baiquan Z, Longbiao G, Guoyou Y. 2020. Progress on molecular mechanism of aluminum resistance in rice. Rice Sci 27 (6): 454-467. DOI: 10.1016/j.rsci.2020.09.003.
Kang F, Wang H, Gao Y, Long J, Wang Q. 2013. Ca2+ promoted the low transformation efficiency of plasmid DNA exposed to PAH contaminants. PLoS ONE 8 (3): e58238. DOI: 10.1371/journal.pone.0058238.
Kochian LV, Hoekenga OA, Piñeros MA. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum toxicity and phosphorus efficiency. Annu Rev Plant Biol 55 (1): 459-463. DOI: 10.1146/annurev.arplant.55.031903.141655.
Kochian LV, Pi˜neros MA, Liu J, Magalhaes JV. 2015. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66: 571-598. DOI: 10.1146/annurev-arplant-043014-114822.
Kochian LV. 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Biol 46: 237-260. DOI: 10.1146/annurev.pp.46.060195.001321.
Kusumawati A, Unsunnidhal L, Budiyanto A, Setyawan AMN, Gustari S. 2023. Construction of the pET-15b plasmid with the Jembrana disease virus tat gene. J Sains Vet 41 (1): 81-87. DOI: 10.22146/jsv.79217. [Indonesian]
Li GZ, Wang ZQ, Yokosho K, Ding B, Fan W, Gong QQ, Li GX, Wu YR, Yang JL, Ma JF, Zheng SJ. 2018. Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa). New Phytol 219 (1): 149-162. DOI: 10.1111/nph.15143.
Li JY, Liu JP, Dong DK, Jia XM, McCouch SR, Kochian LV. 2014. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc Natl Acad Sci USA 111 (17): 6503-6508. DOI: 10.1073/pnas.1318975111.
Li X, Sui X, Zhang Y, Sun Y, Zhao Y, Zhai Y, Wang Q. 2010. An improved calcium chloride method preparation and transformation of competent cells. Afr J Biotechnol 9 (50): 8549-8554. DOI: 10.5897/AJB10.105.
Li XW, Li YL, Qu M, Xiao HD, Feng YM, Liu JY, Wu LS, Yu M. 2016. Cell wall pectin and its methyl-esterification in transition zone determine Al resistance in cultivars of pea (Pisum sativum). Front Plant Sci 7: 39. DOI: 10.3389/fpls.2016.00039.
Liu J, Zhou MX, Delhaize E, Ryan PR. 2017. Altered expression of a malate-permeable anion channel, OsALMT4, disrupts mineral nutrition. Plant Physiol 175: 1745-1759. DOI: 10.1104/pp.17.01142.
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10 (8): 1391-1406. DOI: 10.1105/tpc.10.8.1391.
Ma JF, Chen ZC, Shen RF. 2014. Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil 381: 1-12. DOI: 10.1007/s11104-014-2073-1.
Meng LJ, Wang BX, Zhao XQ, Ponce K, Qian Q, Ye GY. 2017. Association mapping of ferrous, zinc, and aluminum tolerance at the seedling stage in indica rice using MAGIC populations. Front Plant Sci 8: 1822. DOI: 10.3389/fpls.2017.01822.
Miftahudin M, Roslim DI, Fendiyanto MH, Satrio RD, Zulkifli A, Umaiyah EI, Chikmawati T, Sulistyaningsih YC, Suharsono S, Hartana A, Nguyen HT, Gustafson JP. 2021. OsGERLP: A novel aluminum tolerance rice gene isolated from a local cultivar in Indonesia. Plant Physiol Biochem 162: 86-99. DOI: 10.1016/j.plaphy.2021.02.019.
Miftahudin, Nurlaela, Juliarni. 2007. Uptake and distribution of aluminum in root apices of two rice varieties under aluminum stress. HAYATI J Biosci 14 (3): 110-114. DOI: 10.4308/hjb.14.3.110.
Miftahudin, Scholes GJ, Gustafson JP. 2002. AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereal L.). Theor Appl Genet 104: 626-631. DOI: 10.1007/s00122-001-0782-3.
Nguyen VT, Burow MD, Nguyen HT, Le BT, Le TD, Paterson AH. 2001. Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theor Appl Genet 102: 1002-1010. DOI: 10.1007/s001220000472.
Okonechnikov K, Golosova O, Fursov M. 2012. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 28 (8): 1166-1167. DOI: 10.1093/bioinformatics/bts091.
Panja S, Saha S, Jana B, Tarakdas B. 2006. Role of membrane potential on artificial transformation of E. coli with plasmid DNA. J Biotechnol 127 (1): 14-20. DOI: 10.1016/j.jbiotec.2006.06.008.
Patigu RS, Wijayanti P, Sebastian A, Purwestri YA. 2021. Optimization of heat shock temperature and time on the transformation of pRGEB32 into Escherichia coli DH5?. J Biol Trop 21 (3): 632-640. DOI: 10.29303/jbt.v21i3.2811.
Pratami MP, Fendiyanto MH, Satrio RD, Nikmah IA, Awwanah M, Farah N, Sari NIP, Nurhadiyanta N. 2022. In-silico genome editing identification and functional protein change of Chlamydomonas reinhardtii Acetyl-CoA Carboxylase (CrACCase). Jordan J Biol Sci 15 (3): 431-440. DOI: 10.54319/jjbs/150312.
Saha I, Sarkar B, Ghosh A, De AK, Adak MK. 2019. Abscisic acid induced cellular responses of sub1A QTL to aluminium toxicity in rice (Oryza sativa L.). Ecotox Environ Safe 183: 109600. DOI: 10.1016/j.ecoenv.2019.109600.
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Comm 290 (3): 998-1009. DOI: 10.1006/bbrc.2001.6299.
Sambrook J, Fritsch ER, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press, New York.
Satrio RD, Fendiyanto MH, Miftahudin M. 2024. Tools and techniques used at global scale through genomics, transcriptomics, proteomics, and metabolomics to investigate plant stress responses at the molecular level. In: Shahid M, Gaur R. (eds) Molecular Dynamics of Plant Stress and Its Management. Springer Nature, Singapore. DOI: 10.1007/978-981-97-1699-9_25.
Satrio RD, Fendiyanto MH, Suharsono S, Supena EDJ, Miftahudin M. 2021. Genome-wide SNP discovery, linkage mapping, and analysis of QTL for morpho-physiological traits in rice during vegetative stage under drought stress. Physiol Mol Biol Plants 27: 2635-2650. DOI: 10.17957/IJAB/15.1230.
Satrio RD, Fendiyanto MH, Suharsono S, Supena EDJ, Miftahudin. 2023. Mapping and identification of QTL for agro-physiological traits in rice (Oryza sativa L.) under drought stress. Plant Gene 33: 100397. DOI: 10.1016/j.plgene.2022.100397.
Satrio RD, Fendiyanto MH, Supena EDJ, Suharsono, Miftahudin M. 2019. Identification of drought-responsive regulatory genes by hierarchical selection of expressed sequence tags and their expression under drought stress in rice. Intl J Agric Biol 22: 1524-1532. DOI: 10.17957/IJAB/15.1230.
Sezonov G, Joseleau-Petit D, D’Ari R. 2007. Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189 (23): 8746-8749. DOI: 10.1128/JB.01368-07.
Si J, Zhou W, Fang Y, Zhou D, Gao Y, Yao Q, Shen X, Zhu C. 2023. Label-free detection of T4 polynucleotide kinase activity and inhibition via malachite green aptamer generated from ligation-triggered transcription. Biosensors 13 (4): 449. DOI: 10.3390/bios13040449.
Tanaka W, Yamauchi T, Tsuda K. 2023. Genetic basis controlling rice plant architecture and its modification for breeding. Breed Sci 73: 30-45. DOI: 10.1270/jsbbs.22088.
Tian XH, Li XP, Zhou HL, Zhang JS, Gong ZZ, Chen SY. 2005. OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element. J Int Plant Biol 47: 467-476. DOI: 10.1111/j.1744-7909.2005.00028.
Xia J X, Yamaji N, Che J, Shen RF, Ma JF. 2014. Differential expression of Nrat1 is responsible for Al-tolerance QTL on chromosome 2 in rice. J Exp Bot 65 (15): 4297- 4304. DOI: 10.1093/jxb/eru201.
Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma F. 2009. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21 (10): 3339-3349. DOI: 10.1105/tpc.109.070771.
Yan L, Riaz M, Wu XW, Du CQ, Liu YL, Jiang CC. 2018. Ameliorative effects of boron on aluminum induced variations of cell wall cellulose and pectin components in trifoliate orange (Poncirus trifoliate (L.) Raf.) rootstock. Environ Pollut 240: 764-774. DOI: 10.1016/j.envpol.2018.05.022.
Yang ZB, He C, Ma Y, Herde M, Ding Z. 2017. Jasmonic acid enhances Al-induced root growth inhibition. Plant Physiol 173 (2): 1420-1433. DOI: 10.1104/pp.16.01756.
Yokosho K, Yamaji N, Fujii-Kashino M, Ma JF. 2016a. Functional analysis of a MATE gene OsFRDL2 revealed its involvement in Al-induced secretion of citrate, but a lower contribution to Al tolerance in rice. Plant Cell Physiol 57: 976-985. DOI: 10.1093/pcp/pcw026.
Yokosho K, Yamaji N, Fujii-Kashino M, Ma JF. 2016b. Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4. Plant Physiol 172 (4): 2327-2336. DOI: 10.1104/pp.16.01214.
Zhang L, Peng Y, Li J, Tian X, Chen Z. 2019. OsMGT1 confers resistance to magnesium deficiency by enhancing the import of Mg in rice. Intl J Mol Sci 20 (1): 207. DOI: 10.3390/ijms20010207.
Zhang MJ, Deng XP, Yin LN, Qi LY, Wang XY, Wang SW, Li HB. 2016. Regulation of galactolipid biosynthesis by overexpression of the rice MGD gene contributes to enhanced aluminum tolerance in tobacco. Front Plant Sci 7: 337. DOI: 10.3389/fpls.2016.00337.
Zhou J, Li X, Xia J, Wen Y, Zhou J, Yu Z, Tian B. 2018. The role of temperature and bivalent ions in preparing competent Escherichia coli. Biotech 8: 222. DOI: 10.1007/s13205-018-1243-x.
Zhu CQ, Cao XC, Bai ZG, Zhu LF, Hu WJ, Hu AY, Abliz B, Zhong C, Liang QD, Huang J, Zhang JH, Jin QY. 2019. Putrescine alleviates aluminum toxicity in rice (Oryza sativa) by reducing cell wall Al contents in an ethylene-dependent manner. Physiol Plant 167 (4): 471-487. DOI: 10.1111/ppl.12961.

Most read articles by the same author(s)