Detection of Voltage-Gated Sodium Channel (VGSC) L1014F knockdown-resistance (Kdr) mutation of Culex quinquefasciatus mosquitoes from Surabaya, Indonesia

##plugins.themes.bootstrap3.article.main##

INTAN FATMA LISTIANDARI
TEGUH HARI SUCIPTO
SYANANDA ZAHRA FADILA
AHMAD RUDI SETIAWAN
SHIFA FAUZIYAH
SAFIRA MADANIYAH
ERYANTIKA CIPTA DEWI
ANAQI SYADDAD IHSAN
NUNIEK HERDYASTUTI
RUDIANA AGUSTINI
RATIH DEWI SAPUTRI
HARIYONO

Abstract

Abstract. Listiandari IF, Sucipto TH, Fadila SZ, Setiawan AR, Fauziyah S, Madaniyah S, Dewi EC, Ihsan AS, Herdyastuti N, Agustini R, Saputri RD, Hariyono. 2025. Detection of Voltage-Gated Sodium Channel (VGSC) L1014F knockdown-resistance (Kdr) mutation of Culex quinquefasciatus mosquitoes from Surabaya, Indonesia. Biodiveritas 26: 1354-1359. Culex quinquefasciatus mosquitoes are a genus of mosquito that can transmit dangerous viruses to humans through their bites, causing diseases in humans such as lymphatic filariasis, chikungunya, Japanese encephalitis, West Nile fever, encephalitis, and St. Louis encephalitis. Therefore, vector control is needed to suppress the spread of these diseases. An easy and inexpensive method to control the vector is using insecticide. Long-term use of insecticide causes the mosquitoes to gain resistance to it. The phenomenon of mosquitoes becoming resistant to insecticides is referred to as knockdown resistance (Kdr). Kdr occurs due to a mutation in the Voltage-Gated Sodium Channel (VGSC), which is the target site of the insecticide. This mutation leads to the reduced sensitivity of the sodium channel to pyrethroid insecticides. The primary objective of this study was to detect the presence of the Vgsc-L1014F Kdr mutation in C. quinquefasciatus mosquitoes. Samples were obtained from six different locations in Surabaya, East Java, Indonesia. This was determined using a technique known as allele-specific PCR (AS-PCR). DNA was extracted from 23 samples of Culex spp. mosquitoes samples, and the VGSC-L1014F mutation was detected using the AS-PCR technique. The results of this study indicated 13 positive cases for the TTT/TTA mutation and 10 negative cases.

##plugins.themes.bootstrap3.article.details##

References
Ahamad A, Kumar J. 2023. Pyrethroid pesticides: An overview on classification, toxicological assessment and monitoring. J Hazard Mat Adv 10 (03): 100284. DOI: 10.1016/j.hazadv.2023.100284.
Amelia-Yap Z.H, Chen C, Sofia-Azirun M, Low V. 2018. Pyrethroid resistance in the dengue vector Aedes aegypti in Southeast Asia: Present situation and prospects for management. Parasit Vectors 11 (1): 332. DOI: 10.1186/s13071-018-2899-0.
Bao W, Liu B, Simonsen D W, Lehmler H J. 2020. Association between exposure to pyrethroid insecticides and risk of all-cause and cause-specific mortality in the general US adult population. JAMA Internal Med 180 (3): 367-374. DOI: 10.1001/jamainternmed.2019.6019.
Bharadwaj N, Sharma R, Subramanian M. 2025. Omics approaches in understanding insecticide resistance in mosquito vectors. Intl J Mol Sci 26 (5): 1854. DOI: 10.3390/ijms26051854.
Brugman VA, Hernández T, Luis M, Medlock JM, Fooks AR, Carpenter S, Johnson N. 2018. The role of Culex pipiens L. (Diptera: Culicidae) in virus transmission in Europe. Intl J Environ Res Pub Health 15 (2): 389. DOI: 10.3390/ijerph15020389.
Chamnanya S, Yanola J, Nachaiwieng W, Lumjuan N, Walton C, Somboon P. 2022. Novel real-time PCR assay detects widespread distribution of knock down resistance (Kdr) mutations associated with pyrethroid resistance in the mosquito, Culex quinquefasciatus, in Thailand. Pesticide Biochem Physiol 186 (06): 105172. DOI: 10.1016/j.pestbp.2022.105172.
Chandrasiri PKGK, Fernando SD, De Silva BGDNK. 2020. Insecticide resistance and molecular characterization of knockdown resistance (Kdr) in Culex quinquefasciatus mosquitoes in Sri Lanka. J Vector Ecol 45 (2): 204-210. DOI: 10.1111/jvec.12391.
Clarkson CS, Miles A, Harding NJ, O’Reilly AO, Weetman D, Kwiatkowski D, Donnelly MJ. 2021. The genetic architecture of target-site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii. Mol Ecol 30 (21): 5303-5317. DOI: 10.1111/mec.15845.
Dahmana H, Mediannikov O. 2020. Mosquito-borne diseases emergence/ resurgence and how to effectively control it biologically. Pathogens 9 (4): 310. DOI: 10.3390/pathogens9040310.
Dang K, Doggett SL, Veera SG, Lee CY. 2017. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasit Vectors 10 (1): 318. DOI: 10.1186/s13071-017-2232-3.
Delannay C, Goindin D, Kellaou K, Ramdini C, Gustave J, Vega-Rúa A. 2018. Multiple insecticide resistance in Culex quinquefasciatus populations from guadeloupe (French west indies) and associated mechanisms. PLoS One 13 (6): e0199615. DOI: 10.1371/journal.pone.0199615.
Direktorat Peningkatan Mutu Tenaga Kesehatan. 2023. Modul MPI. 1: Bionomik vektor dan binatang pembawa penyakit. Modul Pelatihan Pengendalian Vektor Dan Binatang Pembawa Penyakit Bagi Tenaga Entomolog Kesehatan di Puskesmas. Kementrian Kesehatan, Jakarta. [Indonesian]
Dusfour I, Vontas J, David JP, Weetman D, Fonseca DM, Corbel V, Raghavendra K, Coulibaly MB, Martins AJ, Kasai S, Chandre F. 2019. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Neglect Trop Diss 13 (10) : e0007615. DOI: 10.1371/journal.pntd.0007615.
Fauziyah S, Subekti S, Utomo B, Sucipto TH, Adrianto H, Aryati A, Wardhani P, Soegeng S. 2021. Detection of Knockdown-resistance mutations (V1016G and F1534C) in dengue vector from Urban Park, Surabaya, Indonesia. J Trop Biodivers Biotechnol 6 (3): 1-12. DOI: 10.22146/jtbb.65357.
Franklinos L H.V, Jones K E, Redding D W, Abubakar I. 2019. The effect of global change on mosquito-borne disease. Lancet Infect Dis 19 (9): 302-312. DOI: 10.1016/S1473-3099(19)30161-6.
Goic B, Stapleford KA, Frangeul L, Doucet AJ, Gausson V, Blanc H, Schemmel J N, Cristofari G, Lambrechts L, Vignuzzi M, Saleh MC. 2016. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat Commun 7 (1): 12410. DOI: 10.1038/ncomms12410.
Gray L, Florez SD, Barreiro AM, Vadillo SJ, González OG, Lenhart A, Manrique SP, Vazquez PGM. 2018. Experimental evaluation of the impact of household aerosolized insecticides on pyrethroid resistant Aedes aegypti. Sci Rep 8: 12535. DOI: 10.1038/s41598-018-30968-8.
Jeon J, Ryu J, Choi KS. 2024. Distribution and frequency of ace-1 and Kdr mutations of Culex pipiens subgroup in the Republic of Korea. Acta Tropica 249: 107058. DOI: 10.1016/j.actatropica.2023.107058.
Kardena IM, Adi AA, Astawa N M, O’Dea M, Laurence M, Sahibzada S, Bruce M. 2021. Japanese encephalitis in Bali, Indonesia: Ecological and socio-cultural perspectives. Intl J Vet Sci Med 9 (1): 31-43. DOI: 10.1080/23144599.2021.1975879.
Kushwah RBS, Dykes CL, Kapoor N, Adak T, Singh OP. 2015. Pyrethroid-resistance and presence of two knockdown resistance (Kdr) mutations, F1534C and a novel mutation T1520I, in Indian Aedes aegypti. PLoS Neglected Trop Dis 9: 3332. DOI: 10.1371/JOURNAL.PNTD.0003332.
Lee HJ, Longnecker M, Calkins TL, Renfro AD, Fredregill CL, Debboun M, Pietrantonio PV. 2020. Detection of the nav channel Kdr-like mutation and modeling of factors affecting survivorship of Culex quinquefasciatus mosquitoes from six areas of harris county (Houston), texas, after permethrin field-cage tests. PLoS Neglected Trop Dis 14 (11): e0008860. DOI: 10.1371/journal.pntd.0008860.
Mack LK, Kelly ET, Lee Y, Brisco KK, Shen KV, Zahid A, Van ST, Cornel AJ, Attardo GM. 2021. Frequency of sodium channel genotypes and association with pyrethrum knockdown time in populations of Californian Aedes aegypti. Parasit Vectors 14 (1): 141. DOI: 10.1186/s13071-021-04627-3.
Mavian C, Dulcey M, Munoz O, Salemi M, Vittor AY, Capua I. 2019. Islands as hotspots for emerging mosquito-borne viruses: A one-health perspective. Viruses 11 (1): 11. DOI: 10.3390/v11010011.
Okafor MA, Ekpo ND, Opara KN, Udoidung NI, Ataya FS, Yaro CA, Batiha GES, Alexiou A, Papadakis M. 2023. Pyrethroid insecticides susceptibility profiles and evaluation of L1014F Kdr mutant alleles in Culex quinquefasciatus from lymphatic filariasis endemic communities. Sci Rep 13 (1) : 18716. DOI: 10.1038/s41598-023-44962-2.
Ore OT, Adeola AO, Bayode AA, Adedipe DT, Nomngongo PN. 2023. Organophosphate pesticide residues in environmental and biological matrices: Occurrence, distribution and potential remedial approaches. Environ Chem Ecotoxicol 5: 9-23. DOI: 10.1016/j.enceco.2022.10.004.
Panjinegara MA, Basuki S, Husada D, Pusarawati S. 2024. Distribution of Voltage Gated Sodium Channel (VGSC) gene mutational variation and Acetylcholinesterase-1 (ACE-1) as a marker for insecticide resistance in Culex spp. mosquitoes in Surabaya. Jurnal Indonesia Sosial Sains 5 (02): 296-307. DOI: 10.59141/jiss.v5i02.963.
Rai P, Saha D. 2022. Occurrence of L1014F and L1014S mutations in insecticide resistant Culex quinquefasciatus from filariasis endemic districts of West Bengal, India. PLoS Neglected Trop Dis 16 (1): e0010000. DOI: 10.1371/journal.pntd.0010000.
Region S. 2023. Scientific note detection of target site mutations in the Acetylcholinesterase and Voltage-Gated Sodium Channel in field populations of Culex. J Am Mosq Control Assoc 39: 57-60. DOI: 10.2987/22-7093.
Saleh M, Ezz -din D, Al-Masri A. 2021. In vitro genotoxicity study of the lambda-cyhalothrin insecticide on Sf9 insect cells line using Comet assay. Jordan J Biol Sci 14 (2): 213-217. DOI: 10.54319/jjbs/140203.
Seidy S, Tavassoli M, Malekifard F. 2022. Pyrethroids resistance in Pulex irritans and Ctenocephalides canis in west and northwest Iran. Vet Res Forum 13 (4): 529-535. DOI: 10.30466/vrf.2021.534642.3215.
Silva MWF, Silva PBN, Vieira AAT, Murphy A, Silva MPG, Weetman D, Wilding CS, Donnelly MJ. 2019. Development and application of a tri-allelic PCR assay for screening Vgsc-L1014F Kdr mutations associated with pyrethroid and organochlorine resistance in the mosquito Culex quinquefasciatus. Parasit Vectors 12 (1): 232. DOI: 10.1186/s13071-019-3490-z.
Silva MWF, Wilding CS, Steen K, Mawejje H, Antão TR, Donnelly MJ. 2017. Local selection in the presence of high levels of gene flow: Evidence of heterogeneous insecticide selection pressure across Ugandan Culex quinquefasciatus populations. PLoS Neglect Trop Dis 11 (10): e0005917. DOI: 10.1371/journal.pntd.0005917.
Sunaryo S, Widiastuti D. 2020. Penggunaan insektisida rumah tangga untuk mencegah dan mengendalikan Aedes aegypti di permukiman di provinsi Sumatera Utara. Balaba: Jurnal Litbang Pengendalian Penyakit Bersumber Binatang Banjarnegara 16 (1): 105-112. DOI: 10.22435/blb.v16i1.2668. [Indonesian]
Thiaw O, Doucouré S, Sougoufara S, Bouganali C, Konaté L, Diagne N, Faye O, Sokhna C. 2018. Investigating insecticide resistance and knock-down resistance (Kdr) mutation in Dielmo, Senegal, an area under long lasting insecticidal-treated nets universal coverage for 10 years. Malaria J 17 (1) : 123. DOI: 10.1186/s12936-018-2276-7.
Wuliandari JR, Lee SF, White VL, Tantowijo W, Hoffmann AA, Endersby HNM. 2015. Association between three mutations, F1565C, V1023G and S996P, in the voltage-sensitive sodium channel gene and knockdown resistance in Aedes aegypti from yogyakarta, Indonesia. Insects 6 (3) : 658-685. DOI: 10.3390/insects6030658.
Zhao M, Ran X, Xing D, Liao Y, Liu W, Bai Y, Zhang Q, Chen K, Liu L, Wu M, Ma Z, Gao J, Zhang H, Zhao T. 2023. Evolution of knockdown resistance (Kdr) mutations of Aedes aegypti and Aedes albopictus in Hainan Island and Leizhou Peninsula, China. Front Cell Infect Microbiol 13: 1265873. DOI: 10.3389/fcimb.2023.1265873.
Zhu Q, Yang Y, Zhong Y, Lao Z, O'Neill P, Hong D, Zhang K, Zhao S. 2020. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere 254: 126779. DOI: 10.1016/j.chemosphere.2020.126779.

Most read articles by the same author(s)