Morphology and molecular studies to reveal the taxonomic status of endemic fish Barbonymus belinka of Lake Singkarak, West Sumatra, Indonesia

##plugins.themes.bootstrap3.article.main##

VIOLA MUTIARA SALIS
Djong Hon Tjong
https://orcid.org/0000-0002-4743-9964
Syaifullah
https://orcid.org/0000-0003-2968-3186
Dahelmi
https://orcid.org/0000-0002-7128-7075
Aadrean
https://orcid.org/0000-0001-8724-614X
Dewi Imelda Roesma
https://orcid.org/0000-0002-5901-1711

Abstract

Abstract. Salis VM, Tjong DH, Syaifullah, Dahelmi, Aadrean, Roesma DI. 2025. Morphology and molecular studies to reveal the taxonomic status of endemic fish Barbonymus belinka of Lake Singkarak, West Sumatra, Indonesia. Biodiversitas 26: 536-550. Species identification is very important in taxonomy and conservation. There are some cases where the distinctive morphological characters of a species show minor differences; for example, the Balingka fish (Barbonymus belinka), endemic to Lake Singkarak, West Sumatra, Indonesia and the Kapiek fish (Barbonymus schwanefeldii). The local community around Lake Singkarak gives two names to the Balingka fish based on size (the larger ones are called Balingka, and the smaller ones are called Kapiek), it can affect the taxonomy and validity of biodiversity data. The lack of comprehensive information on B. belinka has led to the species being classified as Data Deficient (DD) on the IUCN Red List. Additionally, the presence of a DNA barcode for Balingka fish in the BOLD system, listed under a different species name than in GenBank (NCBI), raises concerns about potential species misidentification and data inconsistencies. A thorough taxonomy review of Balingka fish (B. belinka) is necessary, utilizing both morphological and molecular approaches. This study aims to clarify the taxonomy and investigate the phylogenetic relationships of the two fish species through morphological and molecular analyses, utilizing Cytochrome Oxidase-I and Cytochrome b gene sequences. Individual samples were used for morphological identification, while liver tissue was used for molecular analysis. The results showed morphometric variations, but meristic traits confirmed that both fishes belong to the same species, B. schwanefeldii. Molecular analysis shows a genetic distance of 0-1.4% for Cytochrome Oxidase-I gene and 0-2.3% for Cytochrome b gene, indicating the same species. Two specific bases at 585 bp of the Cytochrome Oxidase-I gene and four specific bases at 599 bp of the Cytochrome b gene are also found unique to B. schwanefeldii from Lake Singkarak, suggesting that these two fishes may represent the same species.

##plugins.themes.bootstrap3.article.details##

References
Alam MA, Parvez I, Ara Y, Khan MN, Nehrin S, Mahajebin T, Hassan MM. 2021. Phylogenetic relations of the cyprinid fishes (Cyprinidae) in Bangladesh inferred from morphological traits and Cytochrome b gene sequences. AACL Bioflux 14(3).
Ajiwibowo H, Ash-Shiddiq RHB, Pratama MB. 2019. Water quality and sedimentation modeling in Singkarak Lake, Western Sumatra. International Journal of GEOMATE. DOI: 10.21660/2019.54.8145.
Aksu I, Bekta? Y. 2019. Mitochondrial phylogeny and biogeography of the genus Gobio (Teleostei: Cyprinidae) in Turkey. Zool Middle East 65:128-141. DOI: 10.1080/09397140.2019.1586126.
Alotaibi AM, Ahmad Z, Farooq M, Albalawi HF, Alrefaei AF. 2020. Phylogenetic analysis of three endogenous species of fish from Saudi Arabia verified that Cyprinion acinaces hijazi is a sub-species of Cyprinion acinaces acinases. J King Saud Univ Sci 32:3014-3017. DOI: 10.1016/j.jksus.2020.08.006.
Amoutchi AI, Ugbor ON, Kouamelan EP, et al. 2023. Morphological variation of African snakehead (Parachanna obscura) populations along climate and habitat gradients in Côte d’Ivoire, West Africa. Environ Biol Fish 106: 1233-1246. DOI: 10.1007/s10641-023-01409-x.
Astuti SS, Hariati AM, Kusuma WE, Wiadnya DGR. 2020. Genetic differences and population structure of spotted barb (Cyprinidae) collected from three rivers in Java Island. J Phys Conf Ser 1665(1): 012059. DOI: 10.1088/1742-6596/1665/1/012059.
Awas M, Ahmed I, Ahmad SM, Al-Anazi KM, Farah MA, Bhat B. 2023. Integrative approach for validation of six important fish species inhabiting River Poonch of north-west Himalayan region (India). Front Genet 13:1047436. DOI: 10.3389/fgene.2022.1047436.
Batubara AS, Muchlisin ZA, Efizon D, Elvyra R, Fadli N, Irham M. 2018. Morphometric variations of the Genus Barbonymus (Pisces, Cyprinidae) harvested from Aceh Waters, Indonesia. Fish Aquat Life 26(4): 231-237. DOI: 10.2478/aopf-2018-0026.
Batubara AS, Muchlisin ZA, Efizon D, Elvyra R, Fadli N, Rizal S, Siti-Azizah MN, Wilkes M. 2021. DNA barcoding (COI genetic marker) revealed hidden diversity of Cyprinid fish (Barbonymus spp.) from Aceh Waters, Indonesia. Biharean Biologist 15(1): 39-47.
Bouzzammit N, El Ouizgani H. 2019. Morphometric and meristic variation in the Atlantic chub mackerel Scomber colias Gmelin, 1789 from the Moroccan coast. Indian J Fish 66(2): 8-15. DOI: 10.21077/ijf.2019.66.2.78488-02.
Burland TG. 2000. DNA STAR’s Lasergene Sequence Analysis Software. Methods Mol Biol 132: 71-91.
Cailliet GM, Love MS, Ebeling AW. 1986. Fishes: A field and laboratory manual on their structure, identification, and natural history. Taylor and Francis Group 117:218-220.
Calazans AM, Martinez PA, Jacobina UP. 2021. Lentic and lotic environments affect morphological diversity in characiformes fishes in the Neotropical São Francisco River Basin, Brazil. Environmental Biology of Fishes 104(8): 977-987. DOI: 10.1007/s10641-021-01131-6.
Cracraft J, Helm-Bychowski K. 1991. Parsimony and phylogenetic inference using DNA sequences: some methodological strategies in phylogenetic analysis of DNA sequences. Oxford University Press, New York.
Dahruddin H, Sholihah A, Sukmono T, Sauri S, Nurhaman U, Wowor D, Steinke D, Hubert N. 2021. Revisiting the diversity of Barbonymus (Cypriniformes, Cyprinidae) in Sundaland using DNA-based species delimitation methods. Diversity 13(7). DOI: 10.3390/d13070283.
Desrita, Manik BR, Rambey R. 2022. Abundance and growth of tinfoil barb (Barbonymus schwanenfeldii) in Tasik River, South Labuhanbatu, North Sumatera, Indonesia. AACL Bioflux 15(6).
Dianiputri U, Aji KW, Arisuryanti T. 2022. Polimorfisme gen mitokondria 16S ikan baung (Hemibagrus nemurus Valenciennes, 1840) dari Sungai Progo, Magelang, Jawa Tengah. Berk Ilm Biol 13(1): 1-7. DOI: 10.22146/bib.v13i1.4629
Dunn NR, O’Brien LK, Burridge CP, Closs GP. 2020. Morphological convergence and divergence in Galaxias fishes in lentic and lotic habitats. Diversity 12(5): 183. DOI: 10.3390/d12050183.
Ellis NA, Miller CT. 2016. Dissection and flat-mounting of the threespine stickleback branchial skeleton. J Vis Exp (111): 54056. DOI: 10.3791/54056.
Esin EV, Bocharova ES, Borisova EA, Markevich GN. 2020. Interaction among morphological, trophic and genetic groups in the rapidly radiating Salvelinus fishes from Lake Kronotskoe. Evolutionary Ecology 34(4): 611-632. DOI: 10.1007/s10682-020-10048-y.
Fang DA, Luo H, He M, Mao C, Kuang Z, Qi H, Xu D, Tan L, Li Y. 2022. Genetic diversity and population differentiation of naked carp (Gymnocypris przewalskii) revealed by cytochrome oxidase subunit I and d-loop. Frontiers in Ecology 10: 827654. DOI: 10.3389/fevo.2022.827654.
Fikiye PP, Smit NJ, Van As LL, Truter M, Hadfield KA. 2023. Integrative morphological and genetic characterisation of the fish parasitic copepod Ergasilus mirabilis Oldewage & van As, 1987: insights into host specificity and distribution in Southern Africa. Diversity 15(9): 965. DOI: 10.3390/d15090965.
Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitán-Espitia JD. 2019. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B 374: 20180174. DOI: 10.1098/rstb.2018.0174.
Friedman ST, Price SA, Corn KA, Larouche O, Martinez CM, Wainwright PC. 2020. Body shape diversification along the benthic–pelagic axis in marine fishes. Proc R Soc B 287: 20201053. DOI: 10.1098/rspb.2020.1053.
Gante HF, Costa LM, Micael J, Alves MJ. 2008. First record of Barbonymus schwanenfeldii Bleeker in the Iberian Peninsula. J Fish Biol 72(4): 864-865. DOI: 10.1111/j.1095-8649.2007.01773.x.
George AB, Westneat MW. 2019. Functional morphology of endurance swimming performance and gait transition strategies in balistoid fishes. J Exp Biol 222(8): jeb194704. DOI: 10.1242/jeb.194704.
Gonzalez-Martinez A, Lopez M, Molero HM, Rodriguez J, González M, Barba C, García A. 2020. Morphometric and meristic characterization of native Chame fish (Dormitator latifrons) in Ecuador using multivariate analysis. Animals 10(10): 1805. DOI: 10.3390/ani10101805.
Gonzalez-Martinez AC, De-Pablos-Heredero M, González J, Rodriguez C, Barba García A. 2021. Morphological variations of wild populations of Brycon dentex (Characidae, Teleostei) in the Guayas Hydrographic Basin (Ecuador). The Impact of Fishing Policies and Environmental Conditions. Animals 11: 1901. DOI: 10.3390/ani11071901.
Hall TA. 2011. BioEdit: An important software for molecular biology. GERF Bull Biosci 2 (1): 60-61.
Hobbs JPA, Herwerden L, Jerry DR, Jones GP, Munday PL. 2013. High genetic diversity in geographically remote populations of endemic and widespread coral reef angelfishes (genus: Centropyge). Diversity 5: 39-50. DOI: 10.3390/d5010039.
Hossen MA, Hossain MY, Pramanik MNU, Nawer F, Khatun D, Parvin MF, Rahman MM. 2016. Morphological characters of Botia lohachata. J Coast Life Med 4: 689-692. DOI: 10.12980/jclm.4.2016J6-148.
Hussain B, Sultana T, Sultana S, Ahmed Z, Mahboob S. 2018. Study on impact of habitat degradation on proximate composition and amino acid profile of Indian major carps from different habitats. Saudi J Biol Sci. DOI: 10.1016/j.sjbs.2018.02.004.
IUCN. 2019. The IUCN Red List of Threatened Species. Version 2019-2. Available at: www.iucnredlist.org.
Jacquemin SJ, Pyron M. 2016. A century of morphological variation in Cyprinidae fishes. BMC Ecol 16: 48. DOI: 10.1186/s12898-016-0104-x.
Jan K, Ahmed I. 2020. Morphometric and meristic characters of snow trout, Schizothorax labiatus, inhabiting the Jhelum River and its tributaries. Fish Aquat Life 28(4): 216-224. DOI: 10.2478/aopf-2020-0026.
Jawad LA, Abed JM, Ibáñez AL, Al-Faisal A. 2022. Morphometric and meristic characters of cultured and wild carp, Cyprinus carpio L., populations (southern Iraq). Fish Aquat Life 30(2): 95-103. DOI: 10.2478/aopf-2022-0009.
J?za T, Muška M, Blabolil P, Ko?vara L, Sajdlová Z, Dumpis J, Medne R. 2024. Spatial fish distribution in autumn in a shallow mesotrophic lake, assessed by hydroacoustic surveys, trawling, and beach seining. Journal of Fish Biology 104(5): 1525-1536. DOI: 10.1111/jfb.15691.
Karlina W, Roesma DI, Tjong DH. 2016. Phylogenetic study of Puntius cf. binotatus fish from Gunung Tujuh Lake in Sumatera based on Cytochrome b gene. J Entomol Zool Stud 4:538-540.
Kartavtsev YP. 2011. Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondrial DNA 22(3): 55-65. DOI: 10.3109/19401736.2011.588215.
Kelley JL, Davies PM, Collin SP, Grierson PF. 2017. Morphological plasticity in a native freshwater fish from semiarid Australia in response to variable water flows. Ecology and Evolution 7(16): 6595-6605. DOI: 10.1002/ece3.3167.
Kottelat M, Kartikasari SN, Wirjoatmodjo S, Whitten T. 1993. Freshwater fishes of Western Indonesia and Sulawesi. Periplus Edition.
Kottelat M, Raffles Museum of Biodiversity Research. 2013. The fishes of the inland waters of Southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. National University of Singapore.
Kuang T, Shuai F, Li X, Chen W, Lek S. 2021. Genetic diversity and population structure of Hemibagrus guttatus (Bagridae, Siluriformes) in the larger subtropical Pearl River based on COI and Cyt b genes analysis. Annales de Limnologie-International Journal of Limnology 57: 7. DOI: 10.1051/limn/2021005.
Kusuma RO, Dadiono MS, Kusuma B, Syakuri H. 2021. Keragaman genetik ikan uceng (Nemacheilus) di sungai wilayah Banyumas berdasar sekuen gen cytochrome oxidase subunit I (COI). J Perikanan Univ Gadjah Mada 23(2): 89-94. DOI: 10.22146/jfs.61167.
Labidi MB, Allaya H, Shahin AAB, Quignard JP, Trabelsi M, Faleh AB. 2021. Morphometric and meristic character variability and relationships among populations of L. from four marine stations along the Tunisian coast. Fish Aquat Life 29(1): 13-28. DOI: 10.2478/aopf-2021-0002.
Langerhans RB. 2008. Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology 48(6): 750-768. DOI: 10.1093/icb/icn092.
Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23(21). DOI: 10.1093/bioinformatics/btm404.
Li S, Cai W, Zhou B. 1993. Variation in morphology and biochemical genetic markers among populations of blunt snout bream (Megalobrama amblycephala). Aquaculture 111(1-4): 117-127. DOI: 10.1016/0044-8486(93)90030-3
Malik DS, Sharma AK, Thakur R, Sharma M. 2020. A review on impact of water pollution on freshwater fish species and their aquatic environment. In: Advances in Environmental Pollution Management: Wastewater Impacts and Treatment Technologies, 1: 10-28. DOI: 10.26832/aesa-2020-aepm-02
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37(5): 1530-1534. DOI: 10.1093/molbev/msaa015.
Modak SK, Naziat A, Chakrabarty J, Mamun MMU, Islam MM, Zahangir MM, Akhter F. 2023. Morphometrics and truss-networking distances among three species of croaker (Johnius borneensis, Johnius argentatus, and Johnius belangerii) from Bangladesh coast of the Bay of Bengal. Bangladesh Journal of Zoology 51(3). DOI: 10.3329/bjz.v51i3.71987.
Murta AG. 2000. Morphological variation of horse mackerel (Trachurus trachurus) in the Iberian and North African Atlantic: implications for stock identification. ICES J Mar Sci. DOI: 10.1006/jmsc.2000.0810.
Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
Ouassal K, Perea S, Doadrio I, Casal-Lopez M, Yahyaoui A. 2021. Assessment of genetic diversity in Luciobarbus rifensis Doadrio, Casal-López & Yahyaoui, 2015 (Teleostei: Cyprinidae) using cytochrome b. Aquaculture, Aquarium, Conservation & Legislation 14: 282-290
Parmaks?z A, Eksi E. 2017. Genetic diversity of the cyprinid fish Capoeta trutta (Heckel, 1843) populations from Euphrates and Tigris rivers in Turkey based on mtDNA COI sequences. Indian Journal of Fisheries 64(1): 18-22. DOI: 10.21077/ijf.2017.64.1.62396-03.
Peristiwady T. 2019. Nilai dan Manfaat Taksonomi dalam Perspektif Keanekaragaman Jenis Ikan Laut di Indonesia. LIPI Press, Jakarta. pp. 24-28.
Quadroni S, De Santis AV, Carosi I, Vanetti S, Zaccara M, Lorenzoni. 2023. Past and present environmental factors differentially influence genetic and morphological traits of Italian barbels (Pisces: Cyprinidae). Water 15: 325. DOI: 10.3390/w15020325.
Radona D, Kusmini II, Aththar MH. 2017. Karakterisasi meristik dan morfometrik tiga generasi ikan tengadak Barbonymus schwanenfeldii asal Kalimantan Barat, Indonesia. J Riset Akuakultur 12(1): 1-8. DOI: 10.15578/jra.12.1.2017.1-8.
Rainboth W. 1994. Inland fishes of India and adjacent countries. Rev Fish Biol Fisheries 4: 135–136. DOI: 10.1007/BF00043269.
Ribera I, Vogler AP. 2000. Habitat type as a determinant of species range sizes: the example of lotic–lentic differences in aquatic Coleoptera. Biological Journal of the Linnean Society 71(1). DOI: 10.1111/j.1095-8312.2000.tb01240.x.
Roa-Fuentes CA, Casatti L, Romero RM. 2015. Phylogenetic signal and major ecological shifts in the ecomorphological structure of stream fish in two river basins in Brazil. Neotrop Ichthyol 13: 165–178. DOI: 10.1590/1982-0224-20140045.
Rohlf FJ. 2009. NTSYS Numerical Taxonomy and Multivariate Analysis System Version 2.0.2. Applied Biostatistics, New York. 43 p.
Roesma DI. 2011. Species diversity and genetic relationships of Cyprinidae fishes in lakes and rivers around West Sumatra. [Dissertation]. Universitas Andalas, Padang. [Indonesian].
Roesma DI, Santoso P. 2011. Morphological divergences among three sympatric populations of Silver Sharkminnow (Cyprinidae: Osteochilus hasseltii C.V.) in West Sumatra. Biodiversitas 12(3). DOI: 10.13057/biodiv/d120304.
Roesma DI, Tjong DH, Aidil DR. 2020. Phylogenetic analysis of transparent gobies in three Sumatran lakes, inferred from mitochondrial Cytochrome Oxidase I (COI) gene. Biodiversitas J Biol Divers 21(1). DOI: 10.13057/biodiv/d210107.
Roesma D, Tjong DH, Janra M, Aidil D. 2022. DNA barcoding of freshwater fish in Siberut Island, Mentawai, Indonesia. Biodiversitas J Biol Divers 23(4): 2112-2118. DOI: 10.13057/biodiv/d230412.
Roesma DI, Tjong DH, Syaifullah, Nofrita, Janra MN, Prawira FDL, Salis VM, Aidil DR. 2023. Fish biodiversity monitoring in Singkarak Lake, West Sumatra: comparison of fish detections using environmental DNA and conventional methods. In: IcoBioSE 2021. ABSR 32: 461-474. DOI: 10.2991/978-94-6463-166-1_56.
Roesma DI, Tjong DH, Syaifullah, Aidil DR. 2023. Phylogenetic analysis of Cyclocheilichthys apogon and Cyclocheilichthys armatus (Fish: Cyprinidae) from West Sumatra. HAYATI J Biosci 30:895-906. DOI: 10.4308/hjb.30.5.895-906.
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34: 3299–3302. DOI: 10.1093/molbev/msx248.
Sahami FM, Kepel RC, Olii AH, Pratasik SB, Lasabuda R, Wantasen A, Habibie SA. 2020. Morphometric and genetic variations of species composers of nike fish assemblages in Gorontalo Bay waters, Indonesia. Biodiversitas 21(10): 4571-4581. DOI: 10.13057/biodiv/d211015.
Salis VM. 2023. Karakteristik DNA Barcoding Ikan Balingka dan Kapiek (Barbonymus spp.) dari Danau Singkarak untuk Autentikasi [Skripsi]. Universitas Andalas, Padang. [Indonesian].
Sánchez-González JR, Morcillo F, Ruiz-Legazpi J, et al. 2022. Fish morphology and passage through velocity barriers: experience with northern straight-mouth nase (Pseudochondrostoma duriense Coelho, 1985) in an open channel flume. Hydrobiologia 849: 1351-1366. DOI: 10.1007/s10750-021-04712-9.
Shuai, F., Yu, S., Lek, S., & Li, X. (2018). Habitat effects on intra-species variation in functional morphology: Evidence from freshwater fish. Ecology and evolution, 8(22), 10902–10913. https://doi.org/10.1002/ece3.4555
Stephan W, Langley CH. 1992. Evolutionary consequences of DNA mismatch inhibited repair opportunity. Genetics 132: 567-574.
Strauss RE. 1985. Evolutionary allometry and variation in body form in the South American catfish genus Corydoras (Callichthydae). Syst Zool 34: 381-396. DOI: 10.2307/2413203.
Suryaningsih S, Bhagawati D, Sukmaningrum S, Sugiharto, Puspitasari IAR. 2020. The morphometrical character of silver barb fish Barbonymus gonionotus (Bleeker, 1849). IOP Conf. Series: Earth and Environmental Science 593:012027. DOI: 10.1088/1755-1315/593/1/012027.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38: 3022-3027. DOI: 10.1093/molbev/msab120.
Taugbøl A, Quinn TP, Østbye K, Vøllestad LA. 2020. Allometric relationships in morphological traits associated with foraging, swimming ability, and predator defense reveal adaptations toward brackish and freshwater environments in the threespine stickleback. Ecology and Evolution 10(23): 13412-13426. DOI: 10.1002/ece3.6945.
Tave D. 1993. Genetic for Fish Hatchery Managers. Kluwer Academic Publishers, Netherlands. 415 p.
Ude GN, Igwe DO, Brown C, Jackson M, Bangura A, Ozokonkwo-Alor O, Ihearahu OC, Chosen O, Okoro M, Ene C, Chieze V. 2020. DNA barcoding for identification of fish species from freshwater in Enugu and Anambra States of Nigeria. Conserv Genet Resour 12: 643-658. DOI: 10.1007/s12686-020-01155-7.
Uruku MN, Adikwu IA, Oyebola OO, Uchendu TE, Akombo PM. 2021. Phenotypic variability of sampled Clarias gariepinus (Burchell, 1822) population from selected sources of Benue and Donga River, Nigeria. Fish Aquac J 12: 100289. DOI: 10.30574/msabp.2021.2.1.0009.
Weber M, de Beaufort LF. 1916. The fishes of the Indo-Australian Archipelago. III. Ostariophysi: II Cyprinoidea Apodes, Synbranchi. Brill, Leiden, The Netherlands.
Whitten T, Damanik SJ, Anwar J, Hisyam N. 2000. The Ecology of Sumatra. Periplus Editions (HK) Ltd, Hong Kong.
Yulianto D, Indra I, Batubara AS, Fadli N, Nur FM, Rizal S, Siti-Azizah MN, Muchlisin ZA. 2020. Morphometrics and genetics variations of mullets (Pisces: Mugillidae) from Aceh waters, Indonesia. Biodiversitas Journal of Biological Diversity 21(8). DOI: 10.13057/biodiv/d210802.
Zakiya A, Ahmed I, Ahmad SM. 2023. Length-weight relationship and morphometric and meristic variation in Dinnawah snowtrout, Schizothorax progastus, inhabiting the Suru River and its tributaries of Kargil, Ladakh Region. Fish Aquat Life 31(4): 198-206. DOI: 10.2478/aopf-2023-0019.
Zulfahmi I, Yuliandhani D, Sardi A, Kautsari N, Akmal Y. 2021. Variasi morfometrik, hubungan panjang bobot dan faktor kondisi ikan famili Holocentridae yang didaratkan di Pelabuhan Perikanan Samudra (PPS) Lampulo, Banda Aceh. Jurnal Kelautan Tropis 24(1): 81-92. DOI: 10.14710/jkt.v24i1.976