Pathway analysis of yield components in several New Plant Type (NPT) rice genotypes

##plugins.themes.bootstrap3.article.main##

DULBARI
DESTIEKA AHYUNI
FAJAR ROCHMAN
RIZKY RAHMADI
PRIYADI
SUBARJO
LINA BUDIARTI
HIDAYAT SAPUTRA
MOH. HARIS IMRON S. JAYA

Abstract

Abstract. Dulbari, Ahyuni D, Rochman F, Rahmadi R, Priyadi, Subarjo, Budiarti L, Saputra H, Jaya MHIS. 2025. Pathway analysis of yield components in several New Plant Type (NPT) rice genotypes. Biodiversitas 26: 770-777. Rice is essential for global nutrition, especially in Asia, with increasing production needed to meet rising food demands from population growth. Efforts to increase rice production are carried out through plant breeding programs. Grain weight per panicle is one of the yield components in rice plants that significantly determines production. Despite its importance, its influence in the selection process is not independent, as it is closely associated with other traits, either directly or indirectly. Therefore, this study aimed to determine the relationship between yield components and their direct and indirect effects on grain weight per panicle of several new plant types (NPT) of rice varieties grown in 2 different locations, namely Tanggamus and Lampung Timur. The study procedures were conducted using a Randomized Complete Block Design with 12 genotypes and 3 replications. Genotypes consisted of 10 NRTs, including IPB 3S, IPB 4S, IPB 5R, IPB6R, IPB117-F-7-2-1, IPB 117-F-7-7-1, IPB 117-F-14-4-1, IPB 117-F-15-4-1, IPB 117-F-20-1-1, IPB 117-F-80-2-1. Meanwhile, the 2 control varieties included Ciliwung and Ciherang. The results showed that rice grain weight per panicle significantly correlated with the number of productive tillers, panicle length, number of filled grains per panicle, and percentage of filled grains per panicle. Productive tiller number, panicle length, number of filled grains per panicle, and percentage of filled grains per panicle directly and indirectly affected grain weight per panicle. In addition, the number of filled grains per panicle directly influenced 0.49%.

##plugins.themes.bootstrap3.article.details##

References
Allard RW. 1960. Principles of Plant Breeding. John Wiley and Sons, Hoboken.
Bhandari A, Bartholomé J, Cao-Hamadoun TV, Kumari N, Frouin J, Kumar A, Ahmadi N. 2019. Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice. PLoS One 14 (5): e0208871. DOI: 10.1371/journal.pone.0208871.
Bhor TJ, Kashid NV, Kadam SM. 2020. Genetic variability, character association and path analysis studies for yield components traits in promising rice (Oryza sativa L.) genotypes. J Pharmacogn Phytochem 9 (4): 1953-1956. DOI: 10.22271/phyto.
BPS [Badan Pusat Statistik]. 2023. Indonesia Population Projection 2020-2050 Result of Population Census 2020. BPS-Statistics Indonesia, Jakarta. https://bps.go.id/en/publication/2023/05/16/fad83131cd3bb9be3bb2a657/indonesia-population-projection-2020-2050-result-of-population-census-2020.html
BPS [Badan Pusat Statistik]. 2024. Kabupaten Lampung Timur Dalam Angka Tahun 2024. BPS Lampung Timur District, LampungTimur. https://lampungtimurkab.bps.go.id/id/publication/2024/02/28/cfc5a196d5dd225ad3ea900c/kabupaten-lampung-timur-dalam-angka-2024.html. [Indonesian]
BPS [Badan Pusat Statistik]. 2024. Kabupaten Tanggamus Dalam Angka Tahun 2024. BPS Tanggamus District, Tanggamus. https://tanggamuskab. bps.go.id/id/publication/2024/02/28/ce4799c26139228c4c4070d1/tanggamus-District-in-figures-2024.html. [Indonesian]
Elias AA, Robbins KR, Doerge RW, Tuinstra MR. 2016. Half a century of studying genotype×environment interactions in plant breeding experiments. Crop Sci 56 (5): 2090-2105. DOI: 10.2135/cropsci2015.01.0061.
FAOSTAT. 2021. Food and Agriculture Organization Corporate Statistical Database. http://www.fao.org/faostat/en/#data/QC.
Fukagawa NK, Ziska LH. 2019. Rice: Importance for global nutrition. J Nutr Sci Vitaminol 65: S2-S3. DOI: 10.3177/jnsv.65.S2.
Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, Li W, Zhan Q, Cheng B, Xia J. 2015. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun 6: 6258. DOI: 10.1038/ncomms7258.
Hulu S, Sinaga J. 2019. Analisis Korelasi: Pearson, Spearman, dan Kendall. Deepublish, Yogyakarta. [Indonesian]
Kujur VK, Abhinav Sao MK, Tiwari A. 2023. Genetic variability, heritability and association analyses for yield and related characters in rice germplasm (Oryza sativa L.). Pharma Innov J 12 (4): 2236-2240.
Liang S, Ren G, Liu J, Zhao X, Zhou M, McNeil D, Ye G. 2015. Genotype-by-environment interaction is important for grain yield in irrigated lowland rice. Field Crops Res 180: 90-99. DOI: 10.1016/j.fcr.2015.05.014.
Limbongan YL, Driyunitha TY, Parari TY, Sjahril R. 2023. Performance of agronomic characteristics and path analysis of the highland new plant types of rice. IOP Conf Ser Earth Environ Sci 1230: 012122. DOI: 10.1088/1755-1315/1230/1/012122.
Nithya N, Beena R, Stephen R, Abida PS, Jayalekshmi VG, Viji MM. 2020. Genetic variability, heritability, correlation coefficient and path analysis of morphophysiological and yield related traits of rice under drought stress. Chem Sci Rev Lett 9 (33): 48-54. DOI: 10.37273/chesci.cs142050122.
Olivares B, Hernández R, Coelho R, Molina JC, Pereira Y. 2018. Spatial analysis of the water index: Advances in sustainable decision-making in Carabobo agricultural territories, Venezuela. Rev Geogr Am Central 60 (1): 277-299. DOI: 10.15359/rgac.60-1.10.
Olivares BO, Hernández RÁ. 2019. Ecoterritorial sectorization for the sustainable agricultural production of potato (Solanum tuberosum L.) in Carabobo, Venezuela. Cienc Technol Agropecu 20 (2): 323-354. DOI: 10.21930/rcta.vol20_num2_art:323-354.
Saito K. 2014. A screening protocol for developing high-yielding upland rice varieties with superior weed-suppressive ability. Field Crops Res 168: 119. DOI: 10.1016/j.fcr.2014.08.006.
Singh RK, Chaudhary BD. 1979. Biometrical Methods in Quantitative Genetic Analysis. Revised Edition. Kalyani Publ, New Delhi.
Singh SK, Habde S, Singh DK, Khaire A, Mounika K, Majhi PK. 2020. Studies on character association and path analysis studies for yield, grain quality and nutritional traits in F2 population of rice (Oryza sativa L.). Electron J Plant Breed 11 (3): 969-975. DOI: 10.37992/2020.1103.158.
Singh SK, Vennela PR, Singh R, Gayatonde V, Singh DK. 2018. Studies on character association, path analysis and genetic variability in rice (Oryza sativa L.) genotypes. Intl J Curr Microbiol Appl Sci 7 (5): 2702-2712. DOI: 10.20546/ijcmas.2018.705.313.
Singh VK, Wahi N, Mishra SK, Singh BD, Singh NK. 2022. Studies on Genetic variability, correlation analysis, character association and path analysis of phenotypic characteristics of twelve mega varieties of rice and its near-isogenic lines carrying high grain number per panicle QTL qGN4.1. Curr Trends Biotechnol Pharm 16 (1): 35-45. DOI: 10.5530/ctbp.2022.1.4
Slafer GA, Andrade FH. 2021. Increases in grain yield in bread wheat from breeding and associated physiological changes. In: Slafer GA (eds). Genetic Improvement of Field Crops. CRC Press, Boca Raton. DOI: 10.1201/9781003210238-1.
Sreedhar S. Reddy UR 2019. Association studies for yield and its traits in rice (Oryza sativa L.) genotypes. Intl J Curr Microbiol Appl Sci 8 (1): 2337-2342. DOI: 10.20546/ijcmas.2019.801.245.
Sreedhar S. 2018. Studies on variability, heritability, genetic advance and divergence for earliness, yield and yield components in rice (Oryza sativa L.) genotypes. Intl J Bio-resour Stress Manag 9 (1): 062-068. DOI: 10.23910/ijbsm/2018.9.1.3c0902.
Sudeepthi K, Srinivas TVSR, Kumar BR, Jyothula DPB, Umar SN. 2020. Assessment of genetic variability, character association and path analysis for yield and yield component traits in rice (Oryza sativa L.). Electr J Plant Breed 11 (01): 144-148. DOI: 10.37992/2020.1101.026.
Tejaswini KLY, Ravikumar BNVSR, Mohammad A, Raju K. 2018. Character association studies of F 5 families in rice (Oryza sativa L.). Intl J Agric Sci 10: 5165-5169. DOI: 10.9735/0975-3710.10.4.5165-5169.
Thuy NP, Trai NN, Khoa BD, Thao NHX, Phong VT. 2023. Correlation and path analysis of association among yield, micronutrients, and protein content in rice accessions grown under aerobic condition from Karnataka, India. Plant Breed Biotechnol 11 (2): 117-129. DOI: 10.9787/PBB.2023.11.2.117.
Tiwari DN, Tripathi SR, Tripathi MP, Khatri N Bastola BR. 2019. Genetic variability and correlation coefficients of major traits in early maturing rice under rainfed lowland environments of Nepal. Adv Agric 2019: 5975901. DOI: 10.1155/2019/5975901.
Umarani E, Hemalatha V, Subbarao LV, Neeraja CN, Suneetha K, Reddy NS. 2019. Studies on character association and path coefficient analysis for anaerobic germination traits, yield and its contributing characters in rice (Oryza sativa L.). Intl J Curr Microbiol Appl Sci 8 (4): 355-362. DOI: 10.20546/ijcmas.2019.804.039.
Widyaningtias LAM, Yudono P, Supriyanta. 2020. Identifikasi karakter morfologi dan agronomi penentu kehampaan malai padi (Oryza sativa L.). Vegetalika 9: 399-413. DOI: 10.22146/veg.50721. [Indonesian]

Most read articles by the same author(s)