Morphometric variation and ecological niche differentiation in Hyophila apiculata and H. involuta from karst microhabitats in Kanchanaburi, Thailand

##plugins.themes.bootstrap3.article.main##

WEERACHON SAWANGPROH

Abstract

Abstract. Sawangproh W. 2024. Morphometric variation and ecological niche differentiation in Hyophila apiculata and H. involuta from karst microhabitats in Kanchanaburi, Thailand. Biodiversitas 25: 4551-4560. Karst environments, characterized by limestone and dolomite formations, host diverse ecosystems shaped by unique geological features such as sinkholes, caves, and underground rivers. These landscapes foster adaptations among flora and fauna, showcasing phenotypic plasticity that enables species to thrive in challenging conditions. This study examines the morphometric variation between Hyophila apiculata M.Fleisch. and H. involuta (Hook.) A.Jaeger in arid karst microhabitats of Kanchanaburi Province, Thailand. Surveys conducted across 86 sampling points revealed predominantly allopatric populations, with H. apiculata present in 26 sites (30%) and H. involuta in 58 sites (68%). Sympatric occurrences were rare, found at only two points (2%). Leaf morphometric analyses demonstrated that H. involuta exhibits wider leaves and larger leaf areas compared to H. apiculata, which features longer and wider median and apical leaf cells with thicker cell walls. Principal Component Analysis (PCA) indicated distinct morphological clusters for the two species, though some overlap was observed, suggesting the possibility of hybridization or transitional forms. These findings underscore the ecological niche differentiation and adaptive strategies of these moss species, enhancing our understanding of plant diversity and resilience in calcareous environments. This research contributes to the broader conservation efforts in these sensitive areas, emphasizing the need for preserving karst ecosystems that harbor unique biological communities and serve as indicators of environmental health. Such insights are critical for developing effective conservation strategies aimed at safeguarding the rich biodiversity found in karst landscapes.

##plugins.themes.bootstrap3.article.details##

References
Ajintaiyasil P. 2017. Diversity of Mosses in Phu Kradueng National Park, Loei Province. [Thesis]. Chulalongkorn University, Bangkok. [Thailand]
Arroyave J, De La Cruz-Fernández DA. 2021. Genetic and morphological evidence cast doubt on the validity of Mexican troglobitic species of the Neotropical catfish genus Rhamdia (Siluriformes: Heptapteridae). Rev Mex Biodivers 92: 923718. DOI: 10.22201/ib.20078706e.2021.92.3718.
Bátori Z, Tölgyesi C, Li G, Erd?s L, Gajdács M, Kelemen A. 2023. Forest age and topographic position jointly shape the species richness and composition of vascular plants in karstic habitats. Annal Forest Sci 80: 16. DOI: 10.1186/s13595-023-01183-x.
Buryová B, Shaw AJ. 2005. Phenotypic plasticity in Philonotis fontana (Bryopsida: Bartramiaceae). J Bryol 27 (1): 13-22. DOI: 10.1179/174328205X40545.
Calabria LM, Petersen K, Hamman ST, Smith RJ. 2016. Prescribed fire decreases lichen and bryophyte biomass and alters functional group composition in Pacific Northwest prairies. Northwest Sci 90 (4): 470-483. DOI: 10.3955/046.090.0407.
Chen H, Li D, Xiao K, Wang K. 2018. Soil microbial processes and resource limitation in karst and non-karst forests. Funct Ecol 32 (5): 1400-1409. DOI: 10.1111/1365-2435.13069.
Coe K, Carter B, Slate M, Stanton D. 2024. Moss functional trait ecology: Trends, gaps, and biases in the current literature. Am J Bot 111 (2): e16288. DOI: 10.1002/ajb2.16288.
de la Mata R, Zas R. 2023. Plasticity in growth is genetically variable and highly conserved across spatial scales in a Mediterranean pine. New Phytol 240 (2): 542-554. DOI: 10.1111/nph.19158.
Dong Y, Chen Q, Fang Z, Wu Q, Xiang L, Niu X, Liu Q, Tan L, Weng Q. 2022. Gut bacteria reflect the adaptation of Diestrammena japanica (Orthoptera: Rhaphidophoridae) to the cave. Front Microbiol 13: 1016608. DOI: 10.3389/fmicb.2022.1016608.
Eddy A. 1991. A Handbook of Malesian Mosses Vol. 2. Leucobryaceae to Buxbaumiacea. Natural History Museum Publications, London, UK.
Engel AS. 2007. Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69 (1): 187-206.
Ford D. 2004. Carbonate karst. In: Gunn J (eds). Encyclopedia of Cave and Karst Science. Routledge, New York.
Geekiyanage N, Goodale UM, Cao K, Kitajima K. 2019. Biotropica 51 (5): 626-640. DOI: 10.1111/btp.12696.
Grismer LL, Wood Jr. PL, Lê M?, Quah ESH, Grismer JL. 2020. Evolution of habitat preference in 243 species of Bent?toed geckos (Genus Cyrtodactylus Gray, 1827) with a discussion of karst habitat conservation. Ecol Evol 10 (24): 13717-13730. DOI: 10.1002/ece3.6961.
Lafuente E, Beldade P. 2019. Genomics of developmental plasticity in animals. Front Genet 10: 720. DOI: 10.3389/fgene.2019.00720.
Leal-Zanchet AM, Marques AD. 2018. Coming out in a harsh environment: A new genus and species for a land flatworm (Platyhelminthes: Tricladida) occurring in a ferruginous cave from the Brazilian savanna. PeerJ 6: e6007. DOI: 10.7717/peerj.6007.
Li J, Zhang L, Li Y. 2022. Exposed rock reduces tree size, but not diversity. Front Plant Sci 13: 851781. DOI: 10.3389/fpls.2022.851781.
Marod D, Pinyo P, Duengkae P, Hiroshi T. 2010. The role of wild banana (Musa acuminate Colla) on wildlife diversity in mixed deciduous forest, Kanchanaburi Province, Western Thailand. Kasetsart J Nat Sci 44 (1): 35-43.
Martinson R, Lambrinos J, Mata-González R. 2019. Water stress patterns of xerophytic plants in an urban landscape. HortScience 54 (5): 818-823. DOI: 10.21273/hortsci13498-18.
Meng W, Ran J, Dai Q, Tu N, Leng T, Ren Q. 2023. Morphological and physiological adaptation characteristics of lithophytic bryophytes to karst high calcium environment. BMC Plant Biol 23 (1): 160. DOI: 10.1186/s12870-022-03980-4.
Mohanasundaram B, Pandey S. 2022. Effect of environmental signals on growth and development in mosses. J Exp Bot 73 (13): 4514-4527. DOI: 10.1093/jxb/erac138.
Nath V, Bansal P. 2015. Reproductive strategies in bryophytes. Plant Biol Biotechnol 335-347. DOI: 10.1007/978-81-322-2286-6_13.
Printarakul N, Jampeetong A. 2020. A Preliminary study on morphological variations from wet and dry microhabitats of Hyophila involuta (Pottiaceae, Bryophyta): A case study from Chiang Mai Province, Northern Thailand. Chiang Mai Univ J Nat Sci 20 (1): e2021020. DOI: 10.12982/cmujns.2021.020.
Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD. 2007. Desiccation-tolerance in bryophytes: A review. Bryologist 110 (4): 595-621. DOI: 10.1639/0007-2745(2007)110[595:DIBAR]2.0.CO;2.
Realistic Asia. 2024. Kanchanaburi: The Ultimate Guide for Exploring Thailand’s Wild West. https://realisticasia.com/travel-blogs/71-kanchanaburi-the-ultimate-guide-for-exploring-thailands-wild-west.
Ren H, Wang F, Ye W, Zhang Q, Han T, Huang Y, Chu G, Hui D, Guo Q. 2021. Bryophyte diversity is related to vascular plant diversity and microhabitat under disturbance in karst caves. Ecol Indic 120: 106947. DOI: 10.1016/j.ecolind.2020.106947.
RStudio Team. 2016. RStudio: Integrated development for R. Boston, MA: RStudio, Inc. Retrieved from http://www.rstudio.com.
Sawangproh W, Hedenäs L, Lang AS, Hansson B, Cronberg N. 2020a. Gene transfer across species boundaries in bryophytes: Evidence from major life cycle stages in Homalothecium lutescens and H. sericeum. Ann Bot 125 (4): 565-579. DOI: 10.1093/aob/mcz209.
Sawangproh W, Lang AS, Hedenäs L, Cronberg N. 2020b. Morphological characters and SNP markers suggest hybridization and introgression in sympatric populations of the pleurocarpous mosses Homalothecium lutescens and H. sericeum. Org Divers Evol 20: 619-637. DOI: 10.1007/s13127-020-00456-x.
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. 2015. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol Reprod Dev 82 (7-8): 518-529. DOI: 10.1002/mrd.22489.
Scriven JJ, Whitehorn PR, Goulson D, Tinsley MC. 2016. Niche partitioning in a sympatric cryptic species complex. Ecol Evol 6 (5): 1328-1339. DOI: 10.1002/ece3.1965.
Širka P, Galvánek D, Turisová I, Sabovljevi? M. 2019. What are the main drivers affecting the pattern of bryophyte life history traits at two contrasting spoil heaps? Flora 253: 17-26. DOI: 10.1016/j.flora.2019.02.004.
Stark LR, Oliver MJ, Mishler BD, McLetchie DN. 2007. Generational differences in response to desiccation stress in the desert moss Tortula inermis. Ann Bot 99 (1): 53-60. DOI: 10.1093/aob/mcl238.
Vanderpoorten A, Papp B, Gradstein R. 2010. Sampling of bryophytes. In: Eymann J, Degreef J, Häuser C, Monje JC, Samyn Y, VandenSpiegel D (eds). Volume 8 - Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories. ABC Taxa, Brussels, Belgium.
Waele JD, Gutiérrez F. 2022. Karst Hydrogeology, Geomorphology and Caves. John Wiley & Sons, Hoboken, New Jersey. DOI: 10.1002/9781119605379.
Xie D-F, Cheng R-Y, Fu X, Zhang X-Y, Price M, Lan Y-L, Wang C-B, He X-J. 2021. A combined morphological and molecular evolutionary analysis of karst-environment adaptation for the genus Urophysa (Ranunculaceae). Front Plant Sci 12: 667988. DOI: 10.3389/fpls.2021.667988.
Xiong L, Long CL, Liao QL, Xue F. 2022. Leaf functional traits and their interrelationships with woody plants in karst forest of Maolan. Chin J Appl Environ Biol 28 (1): 152-159. DOI: 10.19675/j.cnki.1006-687x.2020.09069. https://www.cabidigitallibrary.org/doi/full/10.5555/20220419715
Yan Q, Zhao L, Wang W, Pi X, Han G, Wang J, Cheng L, He Y-K, Kuang T, Qin X, Sui S-F, Shen J-R. 2021. Antenna arrangement and energy-transfer pathways of PSI-LHCI from the moss Physcomitrella patens. Cell Discov 7 (1): 10. DOI: 10.1038/s41421-021-00242-9.
Zhang C, Niu D, Zhang L, Li X, Fu H. 2021. Plant functional traits shape growth rate for xerophytic shrubs. Plant Biol 24 (1): 205-214. DOI: 10.1111/plb.13317.
Zhao W-Y, Liu Z-C, Shi S et al. 2024. Landform and lithospheric development contribute to the assembly of mountain floras in China. Nature Comm 15 (1): 5139. DOI: 10.1038/s41467-024-49522-4.
Zhu X, Shen Y, He B, Zhao Z. 2017. Humus soil as a critical driver of flora conversion on karst rock outcrops. Sci Rep 7: 12611. DOI: 10.1038/s41598-017-13060-5.