Isolation and evaluation of the antimicrobial activity of endophytic fungi from Orthosiphon aristatus

##plugins.themes.bootstrap3.article.main##

HERLAND SATRIAWAN
NIKY AFRILIA ZAIMI
ARIED ERIADI
MAI EFDI
TRINA EKAWATI TALLEI
REGINA ANDAYANI
DIAN HANDAYANI

Abstract

Abstract. Satriawan H, Zaimi NA, Eriadi A, Efdi M, Tallei TE, Andayani R, Handayani D. 2025. Isolation and evaluation of the antimicrobial activity of endophytic fungi from Orthosiphon aristatus. Biodiversitas 26: 963-970. Orthosiphon aristatus, known as cat's whiskers or Javanese tea in Indonesia, has been used in traditional medicine to enhance urination, treat kidney inflammation, mitigate kidney stones, regulate diabetes, address albuminuria and syphilis, alleviate rheumatism, reduce blood glucose levels, and function as an antibacterial agent. The purpose of this study was to investigate the endophytic fungal resources of Orthosiphon aristatus and evaluate its potential as a source of bioactive compounds, particularly against antibiotic-resistant pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). Eleven fungal isolates were obtained from the plant’s leaves, stems, and roots. The ethyl acetate extract of isolates was subjected to comprehensive antimicrobial screening at a concentration of 5%. Three isolates-OAA1, OAA3, and OAD1-exhibited considerable antibacterial activity, with OAD1 displaying the most significant efficacy, as evidenced by a 12.57 ± 1.09 mm inhibition zone against MRSA. Nevertheless, none of the extracts could suppress the proliferation of Candida albicans. Subsequent molecular identification verified that OAD1 was Aspergillus niger. The phytochemical analysis revealed that the triterpenoid and flavonoid groups exhibited a positive reaction, whereas the alkaloid and phenol compound groups exhibited a negative response. The findings highlight the potential of endophytic fungi from O. aristatus as promising sources of novel bioactive compounds, especially for addressing antibiotic-resistant pathogens like MRSA. The identification of A. niger as a powerful antibacterial-producing organism presents promising prospects for the creation of novel pharmaceuticals, particularly regarding multidrug-resistant infections. This study emphasizes the pressing necessity for additional research to identify and characterize the specific compounds that confer antibacterial activity and to investigate their extensive therapeutic applications.

##plugins.themes.bootstrap3.article.details##

References
Abd Aziz NA, Hasham R, Sarmidi MR, Suhaimi SH, Idris MKH. 2021. A review on extraction techniques and therapeutic value of polar bioactives from Asian medicinal herbs: Case study on Orthosiphon aristatus, Eurycoma longifolia, and Andrographis paniculata. Saudi Pharm J 29 (2): 143-165. DOI: 10.1016/J.JSPS.2020.12.016.
Albu SA, Koteva K, King AM, Al-Karmi S, Wright GD, Capretta A. 2016. Total synthesis of aspergillomarasmine A and related compounds: A sulfamidate approach enables exploration of structure-activity relationships. Angew Chem Intl Ed Engl 128 (42): 13453-13456. DOI: 10.1002/ANIE.201606657.
Ambursa MB, Rahman MNG, Sulaiman SA, Zakaria AD, Daud MAM, Zakaria Z, Zahari Z, Wong MPK. 2021. An in vitro study of Orthosiphon stamineus (misai kucing) standardized water extract as a chemolytic agent in urolithiasis. J Pharm Bioallied Sci 13 (4): 373-379. DOI: 10.4103/JPBS.JPBS_526_21.
Ameer OZ, Salman IM, Yam MF, Abdulla MA, Shah AM. 2012. Orthosiphon stamineus: Traditional uses, phytochemistry, pharmacology, and toxicology: A review. J Med Food 15 (8): 678-690. DOI: 10.1089/jmf.2011.1961.
Ancheeva E, Daletos G, Proksch P. 2019. Bioactive secondary metabolites from endophytic fungi. Curr Med Chem 27 (11): 1836-1854. DOI: 10.2174/0929867326666190916144709.
Ashraf K, Sultan S, Adam A. 2018. Orthosiphon stamineus Benth. is an outstanding food medicine: Review of phytochemical and pharmacological activities. J Pharm Bioallied Sci 10 (3): 109-118. DOI: 10.4103/JPBS.JPBS_253_17.
Böhm J, Hoff B, O’Gorman CM, Wolfers S, Klix V, Binger D, Zadra I, Kürnsteiner H, Pöggeler S, Dyer PS, Kück U. 2013. Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci USA 110 (4): 1476-1481. DOI: 10.1073/pnas.1217943110.
Boruta T, Milczarek I, Bizukojc M. 2019. Evaluating the outcomes of submerged co-cultivation: Production of lovastatin and other secondary metabolites by Aspergillus terreus in fungal co-cultures. Appl Microbiol Biotechnol 103: 5593-5605. DOI: 10.1007/S00253-019-09874-0.
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. 2022. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 13: 933017. DOI: 10.3389/fmicb.2022.933017.
Chung PY. 2020. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. Phytomedicine 73: 152933. DOI: 10.1016/J.PHYMED.2019.152933.
Davis WW, Stout TR. 1971. Disc plate method of microbiological antibiotic assay. J Microbiol 22 (4): 659-65. DOI: 10.1128/AEM.22.4.659-665.1971.
Ferrer C, Colom F, Frasés S, Mulet E, Abad JL, Alió JL. 2001. Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J Clin Microbiol 39 (8): 2873-2879. DOI: 10.1128/JCM.39.8.2873-2879.2001.
Gakuubi MM, Munusamy M, Liang ZX, Ng SB. 2021. Fungal endophytes: A promising frontier for discovery of novel bioactive compounds. J Fungi (Basel) 7 (10): 0786. DOI: 10.3390/jof7100786.
Guignard B, Entenza JM, Moreillon P. 2005. Beta-lactams against Methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol 5 (5): 479-489. DOI: 10.1016/J.COPH.2005.06.002.
Handayani D, Aminah I. 2017. Antibacterial and cytotoxic activities of ethyl acetate extract of symbiotic fungi from West Sumatra marine sponge Acanthrongylophora ingens. J Appl Pharm Sci 7 (2): 237-240. DOI: 10.7324/JAPS.2017.70234.
Handayani D, Artasasta MA. 2017. Antibacterial and cytotoxic activities screening of symbiotic fungi extract isolated from marine sponge Neopetrosia chaliniformis AR-01. J Appl Pharm Sci 7 (5): 66-69. DOI: 10.7324/JAPS.2017.70512.
Handayani D, Rivai H, Mulyana R, Suharti N, Rasyid R, Hertiani T. 2018. Antimicrobial and cytotoxic activities of endophytic fungi isolated from mangrove plant Sonneratia alba Sm. J Appl Pharm Sci 8 (2): 049-053. DOI: 10.7324/JAPS.2018.8207.
Harborne JB. 1984. Methods of Plant Analysis. Chapman and Hall, London. DOI: 10.1007/978-94-009-5570-7_1.
Herwina H, Janra MN, Anita F, Mairawita, Yaherwandi. 2021. Are bird nests the habitat for ants? Implication from ant inventory (Hymenoptera: Formicidae) across various bird nests. IOP Conf Ser Earth Environ Sci 748 (1): 012036. DOI: 10.1088/1755-1315/748/1/012036.
Kjer J, Debbab A, Aly AH, Proksch P. 2010. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5 (3): 479-490. DOI: 10.1038/nprot.2009.233.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33 (7): 1870-1874. DOI: 10.1093/molbev/msw054.
Malahubban M, Alimon AR, Sazili AQ, Fakurazi S, Zakry FA. 2013. Phytochemical analysis of Andrographis paniculata and Orthosiphon stamineus leaf extracts for their antibacterial and antioxidant potential. Trop Biomed 30: 467-480.
Novaryatiin S, Indah I. 2019. The medicinal plants used in Anjir Pulang Pisau, Central Kalimantan-Indonesia. Pharmacogn J 11 (6): 1572-1579. DOI: 10.5530/PJ.2019.11.240.
Ordynets A, Keßler S, Langer E. 2021. Geometric morphometric analysis of spore shapes improves identification of fungi. PLoS One 16 (8): 0250477. DOI: 10.1371/journal.pone.0250477.
Saitoh S, Aoyama H, Fujii S, Sunagawa H, Nagahama H, Akutsu M, Shinzato N, Kaneko N, Nakamori T. 2016. A quantitative protocol for DNA metabarcoding of springtails (Collembola). NRC Research Press, Ottawa.
Sandrawati N, Hati SP, Yunita F, Putra AE, Ismed F, Tallei TE, Hertiani T, Handayani D. 2020. Antimicrobial and cytotoxic activities of marine sponge-derived fungal extracts isolated from Dactylospongia sp. J Appl Pharm Sci 10: 28-33. DOI: 10.7324/JAPS.2020.104005.
Singh A, Singh, DK, Kharwar RN, White JF. Gond SK. 2021. Fungal Endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges. Microorganisms 9: 197. DOI: 10.3390/ microorganisms9010197.
Stierle A, Strobel G, Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260 (5105): 214-216. DOI: 10.1126/SCIENCE.8097061.
Tang MC, Zou Y, Yee D, Tang Y. 2018. Identification of the pyranonigrin A biosynthetic gene cluster by genome mining in Penicillium thymicola IBT 5891. AIChE J 64: 4182-4186. DOI: 10.1002/AIC.16324.
Wang K, Shiwei W, Bin W, Jiguang W. 2014. Bioactive natural compounds from the mangrove endophytic fungi. Med Chem 14 (4): 370-391.
Wen J, Okyere SK, Wang S, Wang J, Xie L, Ran Y, Hu Y. 2022. Endophytic fungi: An effective alternative source of plant-derived bioactive compounds for pharmacological studies. J Fungi (Basel) 8 (2): 0205. DOI: 10.3390/jof8020205.
WHO [World Health Organization]. 2023. WHO publishes Antimicrobial Resistance on 21 November 2023. Available via https://www.who.int/ news-room/fact-sheets/detail/antimicrobial-resistance?utm_source= chatgpt.com

Most read articles by the same author(s)