Discovery of potential alleles for iron (Fe) toxicity tolerance in rice: Phenotypic and genotypes analysis of doubled haploid lines

##plugins.themes.bootstrap3.article.main##

LILI CHRISNAWATI
MIFTAHUDIN
DWINITA WIKAN UTAMI

Abstract

Abstract. Chrisnawati L, Miftahudin, Utami DW. 2025. Discovery of potential alleles for iron (Fe) toxicity tolerance in rice: Phenotypic and genotypes analysis of doubled haploid lines. Biodiversitas 26: 851-858. Tidal swamplands present a promising opportunity for expanding rice cultivation. However, iron (Fe) toxicity poses major obstacles to development. To overcome these challenges, it is crucial to develop Fe-tolerant rice genotypes and identify molecular markers, such as single nucleotide polymorphisms (SNPs). This study aimed to identify Fe-tolerant doubled haploid rice genotypes and SNP markers related to Fe toxicity tolerance. The experiment was carried out by cultivating 45 doubled haploid rice lines (BMIP 1-BMIP 33 and BMIP 39-BMIP 50), derived from reciprocal crosses between IR54/Parekaligora and Bio 110/Markuti, under Fe-toxic conditions. Phenotypic evaluations were based on the leaf bronzing symptom (LBS) score and genotype analysis was performed using high-throughput sequencing of 384 SNPs. SNPs correlated with phenotypic data were analyzed using the Tassel 2.0 software, with significance set at a p-value <0.05. The results showed that there were 12 highly Fe-tolerant and 33 lines with moderate tolerance and seven SNPs were identified in proximity to QTLs/genes associated with iron (Fe) toxicity and abiotic stress responses, namely qFETOX-2, OsIRT, OsFRO2, OsNRAMP5, and Cyclin-like F-box. Phylogenetic analysis grouped Fe-tolerant lines, including BMIP 25, BMIP 26, BMIP 46, BMIP 47, BMIP 48, BMIP 49, and BMIP 50, with Mahsuri as the positive control, showing shared genetic traits. These results provided valuable markers for breeding programs to obtain Fe-tolerant rice.

##plugins.themes.bootstrap3.article.details##

References
Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I. 2020. Diverse and dynamic roles of F-box proteins in plant biology. Planta 251 (3): 68. DOI: 10.1007/s00425-020-03356-8.
Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N. 2012. Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar×Swarna RILs. Gene 508 (2): 233-240. DOI: 10.1016/j.gene.2012.07.054.
Aratani H, Rumanti IA, Nugraha Y, Kamiya T, Yamasaki Y, Kato Y. 2023. Differences in Fe toxicity response index and associated growth characteristics among rice genotypes. Plant Prod Sci 26 (4): 411-417. DOI: 10.1080/1343943X.2023.2252146.
Aung MS, Masuda H. 2020. How does rice defend against excess iron?: Physiological and molecular mechanisms. Front Plant Sci 11: 1102. DOI: 10.3389/fpls.2020.01102.
Azdan MD, Fatah MZ, Sadat AM, Juari, Saleh MI, Winata ES, Hazet FA, Sianturi UM Wananda BR, Taufani AR, Sutedjo T, Rullihandia N, Gagono A, Nurzaman FP, Soekarno I, Rahmadi, Yadi, Ruswandi A, Sadarviana V, Kurniawan A, Diputra AKR, Soviyana R, Sari WR. 2021. Pengembangan dan Pengelolaan Rawa Berkelanjutan. ITB Press, Bandung. [Indonesian]
Bajželj B, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, Gilligan CA. 2014. Importance of food-demand management for climate mitigation. Nat Clim Chang 4 (10): 924-929. DOI: 10.1038/nclimate2353.
Bashir K, Hanada K, Shimizu M, Seki M Nakanishi H, Nishizawa NK. 2014. Transcriptomic analysis of rice in response to iron deficiency and excess. Rice 7 (1): 18. DOI: 10.1186/s12284-014-0018-1.
Chang JD, Xie Y, Zhang H, Zhang S, Zhao FJ. 2022. The vacuolar transporter OsNRAMP2 mediates Fe remobilization during germination and affects Cd distribution to rice grain. Plant Soil 476 (1-2): 79-95. DOI: 10.1007/s11104-022-05323-6.
Chrisnawati L, Miftahudin, Utami DW. 2016. STS marker associated with iron toxicity tolerance in rice. J Trop Life Sci 6 (1): 59-64. DOI: 10.11594/jtls.06.01.11.
Chrisnawati L, Miftahudin, Utami DW. 2021. Identification of SNPs associated with iron toxicity tolerance in rice. J Phys Conf Ser 1751 (1): 012044. DOI: 10.1088/1742-6596/1751/1/012044.
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19 (1): 11-15.
Dufey I, Hiel MP, Draye X, Lutts S, Kone B, Drame KN, Konate KA, Sie M, Bertin P. 2012. Multienvironment quantitative trait loci mapping and consistency across environments of resistance mechanisms to ferrous iron toxicity in rice. Crop Sci 52 (2): 539-550. DOI: 10.2135/cropsci2009.09.0544.
Fahmid IM, Wahyudi N, Agustian A, Aldillah R, Gunawan E. 2022. The potential swamp land development to support food estates programmes in Central Kalimantan, Indonesia. Environ Urban Asia 13 (1): 44-55. DOI: 10.1177/09754253221078178.
Fukase E, Martin W. 2020. Economic growth, convergence, and world food demand and supply. World Dev 132: 104954. DOI: 10.1016/j.worlddev.2020.104954.
Hao X, Mo Y, Ji W, Yang X, Xie Z, Huang D, Li D, Tian L. 2022. The OsNRAMP4 aluminum transporter is involved in cadmium accumulation in rice grains. Reprod Breed 2 (4): 125-132. DOI: 10.1016/j.repbre.2022.10.001.
Hatta M, Sulakhudin N, Burhansyah R, Kifli GC, Dewi DO, Kilmanun JC, Permana D, Supriadi K, Warman R, Azis H, Santari PT, Widiastuti DP. 2023. Food self-sufficiency: Managing the newly-opened tidal paddy fields for rice farming in Indonesia (A case study in West Kalimantan, Indonesia). Heliyon 9 (3): e13839. DOI: 10.1016/j.heliyon.2023.e13839.
IRRI. 2014. Standard Evaluation System for Rice (SES). 5th Edition, International Rice Research Institute, Los Banos.
Ishimaru Y, Takahashi R, Bashir K. 2012. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2: 286. DOI: 10.1038/srep00286.
Islam MR, Naveed SA, Zhang Y, Li Z, Zhao X, Fiaz S, Zhang F, Wu Z, Hu Z, Fu B, Shi Y, Shah SM, Xu J, Wang W. 2022. Identification of candidate genes for salinity and anaerobic tolerance at the germination stage in rice by genome-wide association analyses. Front Genet 23 (13): 822516. DOI: 10.3389/fgene.2022.822516.
Kanwal F, Riaz A, Ali S, Zhang G. 2024. NRAMPs and manganese: Magic keys to reduce cadmium toxicity and accumulation in plants. Sci Total Environ 921: 171005. DOI: 10.1016/j.scitotenv.2024.171005.
Khairullah I, Saleh M, Alwi M, Masganti N. 2021. Increasing productivity of rice through iron toxicity control in acid sulfate soils of tidal swampland. IOP Conf Ser Earth Environ Sci 648 (1): 012151. DOI: 10.1088/1755-1315/648/1/012151.
Li Y, Li J, Yu Y, Dai X, Gong C, Gu D, Xu E, Liu Y, Zou Y, Zhang P, Chen X, Zhang W. 2021. The tonoplast-localized transporter OsNRAMP2 is involved in iron homeostasis and affects seed germination in rice. J Exp Bot 72 (13): 4839-4852. DOI: 10.1093/jxb/erab159.
Mahender A, Swamy BPM, Anandan A, Ali J. 2019. Tolerance of iron-deficient and -toxic soil conditions in rice. Plants 8 (2): 31. DOI: 10.3390/plants8020031.
Maruapey A, Wicaksana N, Karuniawan A, Windarsih G, Utami DW. 2020. Swampy rice lines for iron toxicity tolerance and yield components performance under inland swamp at Sorong, West Papua, Indonesia. Biodiversitas 21: 5394-5402. DOI: 10.13057/biodiv/d211146.
Miao S, Lu J, Zhang G, Jiang J, Li P, Qian Y, Wang W, Xu J, Zhang F, Zhao X. 2024. Candidate genes and favorable haplotypes associated with iron toxicity tolerance in rice. Intl J Mol Sci 25 (13): 6970. DOI: 10.3390/ijms25136970.
Nugraha Y, Ardie SW, Ghulamahdi M, Aswidinnoor H, Suwarno, Aswidinnoor H. 2016a. Generation mean analysis of leaf bronzing associated with iron toxicity in rice seedlings using digital imaging methods. SABRAO J Breed Genet 48: 453-464.
Nugraha Y, Utami DW, Rosdianti I, Ardie SW, Ghulammahdi M, Suwarno S, Aswidinnoor H. 2016b. Markers-traits association for iron toxicity tolerance in selected Indonesian rice varieties. Biodiversitas 17: 753-763. DOI: 10.13057/biodiv/d170251.
Ousmael K, Whetten RW, Xu J, Nielsen UB, Lamour K, Hansen OK. 2023. Identification and high-throughput genotyping of single nucleotide polymorphism markers in a non-model conifer (Abies nordmanniana (Steven) Spach). Sci Rep 13: 22488. DOI: 10.1038/s41598-023-49462-x.
Padmashree R, Barbadikar KM, Honnappa N, Magar ND, Balakrishnan D, Lokesha R, Gireesh C, Siddaiah AM, Madhav MS, Ramesha YM, Bharamappanavara M, Phule AS, Senguttuvel P, Diwan JR, Subrahmanyam D, Sundaram RM. 2023. Genome-wide association studies in rice germplasm reveal significant genomic regions for root and yield-related traits under aerobic and irrigated conditions. Front Plant Sci 14: 1143853. DOI: 10.3389/fpls.2023.1143853.
Pradhan S, Pandit E, Pawar S, Pradhan A, Behera L, Das S, Pathak H. 2020. Genetic regulation of homeostasis, uptake, bio-fortification and efficiency enhancement of iron in rice. Environ Exp Bot 177: 104066. DOI: 10.1016/j.envexpbot.2020.104066.
Rumanti IA, Wening RH, Sitaresmi T, Nugraha Y. 2017. Leaf bronzing symptom score as related to grain yield of rice under iron toxicity of acid-sulfate soil area. Proc PERIPI-2017 Intl Sem 2017: 154-161.
Rumanti IA, Hairmansis A, Nugraha Y, Nafisah, Susanto U, Wardana P, Subandiono RE, Zaini Z, Sembiring H, Khan NI, Singh RK, Johnson DE, Stuart AM, Kato Y. 2018. Development of tolerant rice varieties for stress-prone ecosystems in the coastal deltas of Indonesia. Field Crops Res 223: 75-82. DOI: 10.1016/j.fcr.2018.04.006.
Sari NN, Saputra RA, Noor M. 2023. Seventy years of rice crop cultivation in tidal swampland: Potential, constraints, and limitations. Adv Biol Sci Res 2023: 217-229. DOI: 10.2991/978-94-6463-128-9_23.
Sarker MH, Hussain MH, Neik TX, Hasan MZ, Wee WY, Tan HS, Ko S, Song B. 2024. Screening of heat stress-tolerant weedy rice and SNP identification of heat-tolerance-related genes. Plant Biotechnol Rep 18: 659-672. DOI: 10.1007/s11816-024-00920-6.
Song Z, Wang X, Li M, Ning Y, Shi S, Yang G, Zhang H, Tang M, Peng, B. 2024. Isolation, heterologous expression, and functional determination of an iron regulated transporter (IRT) gene involved in Fe2+ transport and tolerance to Fe2+ deficiency in Vitis vinifera. Plant Cell Tiss Organ Cult 156: 65. DOI: 10.1007/s11240-023-02624-1.
Sulaiman AA, Sulaeman Y, Minasny B. 2019. A framework for the development of wetland for agricultural use in Indonesia. Resources 8 (1): 34. DOI: 10.3390/resources8010034.
Tang L, Dong J, Qu M, Tang L, Dong J, Qu M, Lv Q, Zhang L, Peng C, Hu Y, Li Y, Ji Z, Mao B, Peng Y, Shao Y, Zhao B. 2022. Knockout of OsNRAMP5 enhances rice tolerance to cadmium toxicity in response to varying external cadmium concentrations via distinct mechanisms. Sci Total Environ 832: 155006. DOI: 10.1016/j.scitotenv.2022.155006.
Turhadi T, Hamim H, Ghulamahdi M, Miftahudin M. 2019. Iron toxicity-induced physiological and metabolite profile variations among tolerant and sensitive rice varieties. Plant Signal Behav 14 (12): 1682829. DOI: 10.1080/15592324.2019.1682829.
Utami DW, Hanarida I. 2014. Evaluasi lapang dan identifikasi molekuler plasma nutfah padi terhadap keracunan Fe. Agrobiogen 10 (1): 9-17. [Indonesian]
Wairich A, Aung MS, Ricachenevsky FK, Masuda H. 2024. You can’t always get as much iron as you want: How rice plants deal with excess of an essential nutrient. Front Plant Sci 15: 1381856. DOI: 10.3389/fpls.2024.1381856.
Wu LB, Shhadi MY, Yusser M, Gregorio G, Matthus E, Becker M, Frei M. 2014. Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7: 8. DOI: 10.1186/s12284-014-0008-3.
Xu K, Wu N, Yao W, Li X, Zhou Y, Li H. 2021. The biological function and roles in phytohormone signaling of the F-Box protein in plants. Agronomy 11: 2360. DOI: 10.3390/agronomy11112360.

Most read articles by the same author(s)