Assessing the nucleotide sequence diversity of COI, COII, CYTB, ND5 in several silkworm strains raised in Vietnam

##plugins.themes.bootstrap3.article.main##

TRAN THI BINH NGUYEN
NGUYEN THI NHAI
LE THI XUAN
HO VIET DUC
NGUYEN DUC DUY
TRAN THI HONG HANH
NGUYEN THI NHIEN

Abstract

Abstract. Nguyen TTB, Nhai NT, Xuan LT, Duc HV, Duy ND, Hanh TTH, Nhien NT. 2025. Assessing the nucleotide sequence diversity of COI, COII, CYTB, ND5 in several silkworm strains raised in Vietnam. Biodiversitas 26: 1061-1068. The selection of silkworm breeds is currently a subject of great interest in Vietnam, where assessing genetic diversity plays a crucial role. The main objective of this study was to evaluate the genetic diversity characteristics of the COI, COII, Cytb, and ND5 loci of mtDNA in 15 parental Bombyx mori (Linnaeus, 1758) lines raised in Vietnam. This includes 10 high-yielding white cocoon strains (bivoltine) and 5 low-yielding yellow cocoon strains (multivoltine), which are well adapted to the local climate conditions in Vietnam. The research used the PCR technique with specific primer pairs, performed sequencing using the Sanger method, and processed the data with BioEdit, DnaSP, and MEGA 11 software. The nucleotide sequencing results revealed a high A+T content in all four loci, particularly at the ND5 locus, where the total A+T content reached 84.94%. The study indicated that COI, COII, and ND5 markers alone are insufficient for differentiating between strains. However, the nucleotide sequences of the COII and ND5 loci can be used to identify the 5 multivoltine yellow cocoon native strains of Vietnam. Additionally, the nucleotide sequence of the Cytb locus can be used to distinguish these 5 native silkworm strains. These results will support breeders in identifying and differentiating native Vietnamese silkworm breeds.

##plugins.themes.bootstrap3.article.details##

References
Alcudia-Catalma MN, Conde MYED, Dee Tan IY, Bautista MAM. 2021. First report on the characterization of genetic diversity of Philippine-reared Bombyx mori strains based on COI and ITS2. Philipp J Sci 150 (S1): 503-517. DOI: 10.56899/150.S1.38.
Allio R, Donega S, Galtier N, Nabholz B. 2017. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: Implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol Biol Evol 34 (11): 2762-2772. DOI: 10.1093/molbev/msx197.
Ausubel FM, R Brent, RE Kingston, DD Moore, JG Seidman, JA Smith, Struhl K. 1996. Short Protocols in Molecular Biology. 3rd eds. John Wiley & Sons Inc, New York. DOI: 10.1002/bmb.1996.5690240143.
Boore JL. 1999. Animal mitochondrial genomes. Nucleic Acids Res 27 (8): 1767-1780. DOI: 10.1093/nar/27.8.1767.
Buhroo ZI, Bhat MA, Ganai NA, Kamili AS, Bali GK, Aziz A. 2018. An efficient protocol for the Inter-Simple Sequence Repeat (ISSR) marker approach in population genetic studies. J Entomol Zool Stud 6 (4): 597-600.
Cameron SL. 2014. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst Entomol 39 (3): 400-411. DOI: 10.1111/syen.12071.
Chen H, Dong H, Yuan H, Shan W, Zhou Q, Li X, Peng H, Ma Y. 2023. Mitochondrial COI and Cytb gene as valid molecular identification marker of sandfly species (Diptera: Psychodidae) in China. Acta Trop 238: 106798. DOI: 10.1016/j.actatropica.2022.106798.
Davidovi? S, Marinkovi? S, Kukobat M, Mihajlovi? M, Tanasi? V, Hribšek I, Tanaskovi? M, Stamenkovi?-Radak M. 2022. Genetic diversity analysis of mitochondrial Cytb gene, phylogeny and phylogeography of protected griffon vulture (Gyps fulvus) from Serbia. Life 12 (2): 164. DOI: 10.3390/life12020164.
Debrah I, Ochwedo KO, Otambo WO, Machani MG, Magomere EO, Onyango SA, Zhong D, Amoah LE, Githeko AK, Afrane YA, Yan G. 2023. Genetic diversity and population structure of anopheles funestus in Western Kenya based on mitochondrial DNA marker COII. Insects 14 (3): 273. DOI: 10.3390/insects14030273.
Fang D-A, Luo H, He M, Mao C, Kuang Z, Qi H, Xu D, Tan L, Li Y. 2022. Genetic diversity and population differentiation of naked carp (Gymnocypris przewalskii) revealed by cytochrome oxidase subunit I and d-loop. Front Ecol Evol 10: 827654. DOI: 10.3389/fevo.2022.827654.
Farag MR, El Bohi KM, Khalil SR, Alagawany M, Arain MA, Sharun K, Tiwari R, Dhama K. 2020. Forensic applications of mitochondrial cytochrome ? gene in the identification of domestic and wild animal species. J Exp Biol Agric Sci 8 (1): 1-8. DOI: 10.18006/2020.8(1).1.8.
Fassina VA, Bignotto TS, Munhoz REF, Fulan B, Bravo JP, Garay LB, Bespalhuk R, das Neves Saez CR, Pereira NC, Pessini GM, Fernandez MA. 2014. Low genetic polymorphism at the Cytochrome C Oxidase I in silkworm strains of the Brazilian germplasm bank. Open J Genet 4 (3): 202-209. DOI: 10.4236/ojgen.2014.43021.
Fernández DC, VanLaerhoven SL, Rodríguez-Leyva E, Zhang YM, Labbé R. 2022. Population structure and genetic diversity of the pepper weevil (Coleoptera: Curculionidae) using the COI barcoding region. J Insect Sci 22 (1): 25. DOI: 10.1093/jisesa/ieac012.
French CM, Bertola LD, Carnaval AC, Economo EP, Kass JM, Lohman DJ, Marske KA, Meier R, Overcast I, Rominger AJ, Staniczenko PPA, Hickerson MJ. 2023. Global determinants of insect mitochondrial genetic diversity. Nat Commun 14 (1): 5276. DOI: 10.1038/s41467-023-40936-0.
Gjuraši? M, ?urovi? T. 2023. Development of sericulture in the eastern Adriatic during the Austrian administration. Athens J Hist 9 (1): 9-52. DOI: 10.30958/ajhis.9-1-1.
H?beanu M, Gheorghe A, Mihalcea T. 2023. Nutritional value of silkworm pupae (Bombyx mori) with emphases on fatty acids profile and their potential applications for humans and animals. Insects 14 (3): 254. DOI: 10.3390/insects14030254.
Hall TA. 1999. BioEdit: A user-friendly biological sequences alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp Ser 41: 95-98.
Herrero MI, Murúa MG, Casmuz A, Gastaminza G, Sosa-Gómez DR. 2023. Genetic diversity and population structure of Helicoverpa gelotopoeon populations from Argentina inferred by mitochondrial DNA COI and CytB gene sequences. Bull Insectol 76 (2): 167-177.
Hwang JS, Lee JS, Goo TW, Yun EY, Sohn HR, Kim HR, Kwon OY. 1999. Molecular genetic relationships between Bombycidae and Saturniidae based on the mitochondria DNA encoding of large and small rRNA. Genet Anal 15 (6): 223-228. DOI: 10.1016/s1050-3862(99)00008-x.
Khan KA. 2021. Genetic diversity and phylogenetic relationship among the western and the Asian honey bees based on two mitochondrial gene segments (COI and ND5). Saudi J Biol Sci 28 (12): 6853-6860. DOI: 10.1016/j.sjbs.2021.07.062.
Kim J-I, Do TD, Lee D, Yeo Y, Kim C-B. 2020. Application of Cytochrome B gene sequences for identification of Parrots from Korean Zoos. Anim Syst Evol Divers 36 (3): 216-221. DOI: 10.5635/ASED.2020.36.3.028.
Kim M-J, Park J-S, Kim H, Kim S-R, Kim S-W, Kim K-Y, Kwak W, Kim I. 2022. Phylogeographic relationships among Bombyx mandarina (Lepidoptera: Bombycidae) populations and their relationships to B. mori inferred from mitochondrial genomes. Biology 11 (1): 68. DOI: 10.3390/biology11010068.
Kim S-W, Kim MJ, Kim K-Y, Kim S-R, Kim I. 2019. Complete mitochondrial genome of the silkworm strain, Chilseongjam Bombyx mori (Lepidoptera: Bombycidae), with a unique larval body marking. Mitochondrial DNA B Resour 4 (2): 2853-2854. DOI: 10.1080/23802359.2019.1660278.
Kim S-W, Park J-S, Kim MJ, Kim K-Y, Kim S-R, Kim I. 2021. Complete mitochondrial genome of the highly fecund Bombyx mori Linnaeus, 1758 (Lepidoptera: Bombycidae) strain Jam 146. Mitochondrial DNA B Resour 6 (8): 2278-2280. DOI: 10.1080/23802359.2021.1920860.
Li A, Zhao Q, Tang S, Zhang Z, Pan S, Shen G. 2005. Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrial cytochrome b genes. J Genet 84 (2): 137-142. DOI: 10.1007/BF02715839.
Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25 (11): 1451-1452. DOI: 10.1093/bioinformatics/btp187.
Nguyen TN, Tran TBN, Tran HN. 2023. Genetic diversity of black soldier flies in Vietnam based on DNA COI sequence. Biodiversitas 24 (12): 6727-6732. DOI: 10.13057/biodiv/d241235.
Oduor EO, Ciera L, Adolkar V, Pido O. 2021. Physical characterization of Eri silk fibers produced in Kenya. J Nat Fibers 18 (1): 59-70. DOI: 10.1080/15440478.2019.1612306.
Ostroverkhova NV, Konusova OL, Kucher AN, Kireeva TN, Vorotov AA, Belikh EA. 2015. Genetic diversity of the locus COI-COII of mitochondrial DNA in honeybee populations (Apis mellifera L.) from the Tomsk region. Russ J Genet 51: 80-90. DOI: 10.1134/S102279541501010X.
Pan Y, Qiu D, Chen J, Yue Q. 2020. Combining COI mini-barcode with next-generation sequencing for animal origin ingredients identification in pro¬cessed meat products. J Food Qual 2020 (1): 2907670. DOI: 10.1155/2020/2907670.
Park J-S, Kim M-J, Kim S-W, Kim K-Y, Kim S-R, Kim I. 2022. Molecular identification of the strains of the domestic silkworm, Bombyx mori (Lepidoptera: Bombycidae), which are endemic to Korea, based on single nucleotide polymorphisms in mitochondrial genome sequences. J Asia-Pac Entomol 25 (2): 101922. DOI: 10.1016/j.aspen.2022.101922.
Perkin LC, Smith TPL, Oppert B. 2021. Variants in the mitochondrial genome sequence of Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrycidae). Insects 12 (5): 387. DOI: 10.3390/insects12050387.
Peterson B, Bezuidenhout CC, Van den Berg J. 2016. Short Communication: Cytochrome c oxidase I and cytochrome b gene sequences indicate low genetic diversity in South African Busseola fusca (Lepidoptera: Noctuidae) from maize. Afr Entomol 24 (2): 518-523. DOI: 10.4001/003.024.0518.
Rahmatullaili S, Fatmawati D, Nisa C, Winaya A, Chamisijatin L, Hindun I. 2019. Genetic diversity of Bali cattle: Cytochrome b sequence variation. IOP Conf Ser: Earth Environ Sci 276: 012048. DOI: 10.1088/1755-1315/276/1/012048.
Ray PP, Barala B, Dash P. 2024. Cytochrome b gene as a potential DNA barcoding marker in ecoraces of tropical Tasar silkworm Antheraea mylitta Drury. Res Sq 2024: 1-15. DOI: 10.21203/rs.3.rs-3302419/v1.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38 (7): 3022-3027. DOI: 10.1093/molbev/msab120.
Vimala S, Kalpana S, EI-Syed E-SA, Mamatha DM. 2020. Screening of genetic variance based on COI gene analysis of Silkworm (Bombyx mori) races. In: Jyothi S, Mamatha D, Satapathy S, Raju K, Favorskaya M (eds). Advances in Computational and Bio-Engineering. CBE 2019. Learning and Analytics in Intelligent Systems, vol 15. Springer, Cham. DOI: 10.1007/978-3-030-46939-9_25.
Yamauchi H, Harada M, Tajima R. 2018. Determination of Insect Order by Analyzing Mitochondrial Gene ND5. Shokuhin Eiseigaku Zasshi 59 (6): 265-268. DOI: 10.3358/shokueishi.59.265.
Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y. 2002. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol 19 (8): 1385-1389. DOI: 10.1093/oxfordjournals.molbev.a004200.
Yukuhiro K, Sezutsu H, Tamura T, Kosegawa E, Kiuchi M. 2011. Nucleotide sequence variation in mitochondrial COI gene among 147 silkworm (Bombyx mori) strains from Japanese, Chinese, European and moltinism classes. Genes Genet Syst 86 (5): 315-323. DOI: 10.1266/ggs.86.315.
Zhang D-X, Hewitt GM. 1997. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25: 99-120. DOI: 10.1016/s0305-1978(96)00042-7.
Zhang H, Bu W. 2022. Exploring large-scale patterns of genetic variation in the COI gene among Insecta: Implications for DNA barcoding and threshold-based species delimitation studies. Insects 13 (5): 425. DOI: 10.3390/insects13050425.