Effect of host tree site conditions of Schima wallichii on vertical structure of epiphytic orchid community

##plugins.themes.bootstrap3.article.main##

INDRA FARDHANI
YUDAI KITAGAMI
TAKESHI TORIMARU
HIROMITSU KISANUKI

Abstract

Abstract. Fardhani I, Kitagami Y, Torimaru T, Kisanuki H. 2025. Effect of host tree site conditions of Schima wallichii on vertical structure of epiphytic orchid community. Biodiversitas 26: 715-722. It is crucial to recognize the conservation challenges and potential intertwined with the delicate balance of epiphytic orchid communities. Therefore, it is imperative to deepen our understanding regarding the factors influencing the ecology of epiphytic orchid community, including how orchid diversity is distributed on a host tree. To clarify the variation in vertical community structure of epiphytic orchids on a host tree species, Schima wallichii, species richness and abundance of these orchids were investigated. Epiphytic orchids occurring on each host tree were allocated to one of five vertical zones. To understand their effects on community structures, host tree site factors such as density of trees surrounding the host, and angle and direction of slope on which the host tree stood, were measured. Crown zones of S. wallichii trees accumulated more species of epiphytic orchids than the trunk zone because the crown contains many branches, to which epiphytes can attach more easily than on the trunk. Zone 3, at the bottom of the crown zone, offered the most potential for many kinds of epiphytic orchid to colonize, according to the accumulation curves of species richness against both the number of host trees and orchid abundance; this is probably because it had larger branches than the other crown zones. The vertical community structures of epiphytic orchid on S. wallichii were not clearly segregated, even between trunk and the three crown zones. Host tree angle of slope significantly drove the vertical structure of the epiphytic orchid community.

##plugins.themes.bootstrap3.article.details##

References
Anbalagan R, Chakraborty D, Kohli A. 2008. ardhani et al J Sci Ind Res 67: 486¬¬-497.
Baker TP, Jordan GJ, Steel EA, Fountain-Jones NM, Wardlaw TJ, Baker SC. 2014. Microclimate through space and time: Microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. For Ecol Manag 334: 174-184. DOI: 10.1016/j.foreco.2014.09.008.
Bakosurtanal. 2001. Peta Rupa Bumi Digital Indonesia 1: 25000: Lembar 1209-314 Lembang. Bakosurtanal. Bogor. [Indonesian]
Bianchini L, Cecchini M, Gallo P, Biocca M. 2020. A survey on rope-based ascending techniques and materials of professional arborists in Italy. In: Monaco AL, Macinnis-Ng C, Rajora OP (eds). The 1st International Electronic Conference on Forests-Forests for a Better Future: Sustainability, Innovation, Interdisciplinarity. Online, 15-30 November 2020.
Chao A, Jost L. 2012. Coverage?based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93: 2533-2547. DOI: 10.1890/11-1952.1.
Christenhusz MJ, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261: 201-217. DOI: 10.11646/phytotaxa.261.3.1.
Comber JB. 1990. Orchids of Java. The Bentham-Moxon Trust. The Royal Botanic Gardens, Kew.
Droissart V, Verlynde S, Ramandimbisoa B, Andriamahefarivo L, Stévart T. 2023. Diversity and distribution of Orchidaceae in one of the world's most threatened plant hotspots (Madagascar). Biodivers Data J 11: e106223. DOI: 10.3897/BDJ.11.e106223.
Elias JPC, Silva BAB, de Carvalho RG, Sampaio MB, Mendieta-Leiva G, Ramos FN. 2024. Tree structure instead of microclimatic zones determines differences in vascular epiphyte assemblages between forest and pasture. For Ecol Manag 552: 121567. DOI: 10.1016/j.foreco.2023.121567.
Fardhani I, Kisanuki H, Parikesit P. 2015. Diversity of Orchid species in Mount Sanggarah, West Bandung. Abstract of the 22nd Tri-University International Joint Seminar Symposium. Jiangsu University, Jiangsu.
Fardhani I, Kisanuki H. 2019. Epiphytic orchid diversity in Schima wallichii trees in a forest region of Mt. Sanggara, West Java, Indonesia. Acta Hortic 1262: 67-74. DOI: 10.17660/ActaHortic.2019.1262.10.
Fardhani I, Torimaru T, Kisanuki H. 2020. The vertical distribution of epiphytic orchids on Schima wallichii trees in a montane forest in West Java, Indonesia. Biodiversitas 21 (1): 290-298. DOI: 10.13057/biodiv/d210136.
Fardhani I, Torimaru T, Kisanuki H. 2021. Effects of tree density and the topography of the sites of host trees on epiphytic orchid communities on Schima wallichii in a forest in West Java, Indonesia. Acta Oecologica 111: 103739. DOI: 10.1016/j.actao.2021.103739.
Getzin S, Wiegand K. 2007. Asymmetric tree growth at the stand level: Random crown patterns and the response to slope. For Ecol Manag 242 (2-3): 165-174DOI:10.1016/j.foreco.2007.01.009.
Gotelli NJ, Colwell RK. 2001. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4: 379-391. DOI: 10.1046/j.1461-0248.2001.00230.x.
Hidasi-Neto J, Bailey RI, Vasseur C, Woas S, Ulrich W, Jambon O, Santos AMC, Cianciaruso MV, Prinzing A. 2019. A forest canopy as a living archipelago: Why phylogenetic isolation may increase and age decrease diversity. J Biogeogr 46: 158-169. DOI: 10.1111/jbi.13469.
Hinsley A, De Boer HJ, Fay MF, Gale SW, Gardiner LM, Gunasekara RS, Kumar P, Masters S, Metusala D, Roberts DL, Veldman S. 2018. A review of the trade in orchids and its implications for conservation. Bot J Linn Soc 186: 435-455. DOI: 10.1093/botlinnean/box083.
Hoeber V, Zotz G. 2022. Accidental epiphytes: Ecological insights and evolutionary implications. Ecol Monogr 92: e1527. DOI: 10.1002/ecm.1527.
Hussain K, Dar MEUI, Khan AM, Iqbal T, Mehmood A, Habib T, Moussa IM, Casini R, Elansary HO. 2024. Temperature, topography, woody vegetation cover and anthropogenic disturbance shape the orchids distribution in the western Himalaya. S Afr J Bot 166: 344-359. DOI: 10.1016/j.sajb.2024.01.042.
Ishii HR, Minamino T, Azuma W, Hotta K, Nakanishi A. 2018. Large, retained trees of Cryptomeria japonica functioned as refugia for canopy woody plants after logging 350 years ago in Yakushima, Japan. For Ecol Manag 409: 457-467. DOI: 10.1016/j.foreco.2017.11.034.
Johansson D. 1974. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr Suec 59: 1-136.
Kainthola A, Sharma V, Pandey VHR, Jayal T, Singh M, Srivastav A, Singh PK, Ray PKC, Singh TN. 2021. Hill slope stability examination along lower tons valley, Garhwal Himalayas, India. Geomat Nat Hazards Risk 12: 900-921.
Kitagami Y, Matsuda Y. 2022. High-throughput sequencing covers greater nematode diversity than conventional morphotyping on natural cedar forests in Yakushima Island, Japan. Eur J Soil Biol 112: 103432. DOI: 10.1016/j.ejsobi.2022.103432.
Kitagami Y, Tanikawa T, Matsuda Y. 2020. Effects of microhabitats and soil conditions on structuring patterns of nematode communities in Japanese cedar (Cryptomeria japonica) plantation forests under temperate climate conditions. Soil Biol Biochem 151: 108044. DOI: 10.1016/j.soilbio.2020.108044.
Koirala K, Mandal RA, Khadka A. 2021. Modeling tree height, crown diameter, volume and carbon in response to diameter at breast height of Schima wallichii and Catanopsis indica: A study from Midhills, Nepal. Intl J Water Res Arid Environ 10: 56-63. DOI: 10.5555/20220567827.
Komada N, Azuma WA, Ogawa Y, Tatsumi C. 2024. Effects of host size and substrate types on the distribution of accidental and obligate epiphytes: A case study in a temperate forest of Japan. Plant Ecol 225: 1139-1153. DOI: 10.1007/s11258-024-01460-3.
Kumar KS, Tripathi SK, Khanduri VP. 2023. Phenological patterns of tropical trees in relation to climatic factors in a mountain moist forest of Indo-Burma hotspot region. Vegetos 36: 1070-1079. DOI: 10.1007/s42535-022-00474-4.
Lang AC, Härdtle W, Bruelheide H, Geißler C, Nadrowski K, Schuldt A, Yu M, von Oheimb G. 2010. Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China. For Ecol Manag 260: 1708-1715. DOI: 10.1016/j.foreco.2010.08.015.
Lembrechts JJ, Lenoir J, Nuñez MA, Pauchard A, Geron C, Bussé G, Milbau A, Nijs I. 2018. Microclimate variability in alpine ecosystems as stepping stones for non?native plant establishment above their current elevational limit. Ecography 41 (6): 900-909. DOI: 10.1111/ecog.03263.
Mendieta?Leiva G, Ramos FN, Elias JP, Zotz G, Acuña?Tarazona M, Alvim FS. 2020. EpIG?DB: A database of vascular epiphyte assemblages in the Neotropics. J Veg Sci 31: 518-528. DOI: 10.1111/jvs.12867.
Morales-Linares J, Carmona-Valdovinos TF, Ortega-Ortiz RV. 2022. Habitat diversity promotes and structures orchid diversity and orchid-host tree interactions. Flora 297: 152180. DOI: 10.1016/j.flora.2022.152180.
Murakami M, Nunes RF, Durand M, Ashton R, Batke SP. 2022. Quantification and variation of microclimatic variables within tree canopies-considerations for epiphyte research. Front For Glob Change 5: 1-15. DOI: 10.3389/ffgc.2022.828725.
Murray J, Smith AP, Simpson M, Elizondo KM, Aitkenhead-Peterson JA, Waring B. 2023. Climate, as well as branch-level processes, drive canopy soil abundance and chemistry. Geoderma 438: 116609. DOI: 10.1016/j.geoderma.2023.116609.
Nieder J, Prosperi J, Michaloud G. 2001. Epiphytes and their contribution to canopy diversity. Plant Ecol 153: 51-63. DOI: 10.2307/1941560.
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H. 2013. Package ‘Vegan’. Community Ecology Package, CRAN.
Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S. 2009. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0. worldagroforestry.org. http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp.
Osie M, Shibru S, Dalle G, Nemomissa S. 2022. Habitat fragmentation effects on vascular epiphytes diversity in Kafa biosphere reserve and nearby coffee agroecosystem, southwestern Ethiopia. Trop Ecol 63: 561-571. DOI: 10.1007/s42965-022-00223-3.
Parra-Sanchez E, Banks-Leite C. 2020. The magnitude and extent of edge effects on vascular epiphytes across the Brazilian Atlantic Forest. Sci Rep 10: 1-11. DOI: 10.1038/s41598-020-75970-1.
Power TD, Cameron RP, Neily T, Toms B. 2018. Forest structure and site conditions of boreal felt lichen (Erioderma pedicellatum) habitat in Cape Breton, Nova Scotia, Canada. Botany 96 (7): 449-459. DOI: 10.1139/cjb-2017-0209.
Prapitasari B, Kurniawan AP. 2022. Distribution pattern and diversity of epiphytic orchids in the Curug Cibereum path, Mount Gede Pangrango, Indonesia. Biotropia 29: 142-149. DOI: 10.11598/btb.2022.29.2.1680.
Prapitasari B, Rezaldi T, Kenza ML, Aliwafa A, Gunawan DA, Nuraini L. 2024. Diversity of orchid species in the Tilu Mountains region of Indonesia and the potential for phytochemistry. J Trop Biodivers Biotechnol 9: 89174. DOI: 10.22146/jtbb.89174.
R Development Core Team. 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.Rproject.org/.
Rahayu EMD, Yusri S. 2022. Habitat preferences of wild orchids in Bantimurung Bulusaraung National Park to model their suitable habitat in South Sulawesi, Indonesia. Biodiversitas 23 (1): 45-54. DOI: 10.13057/biodiv/d230106.
Rai P, Moktan S. 2023. Vascular epiphytic community along elevational zone in sub-tropical forest ecosystem. Taiwania 68: 217. DOI: 10.6165/tai.2023.68.217
Richards JH, Luna IMT, Waller DM. 2020. Tree longevity drives conservation value of shade coffee farms for vascular epiphytes. Agric Ecosyst Environ 301: 107025. DOI: 10.1016/j.agee.2020.107025.
Rohman F, Insani N, Purwanto P, Dharmawan A, Fardhani I, Akhsani F. 2023. Vegetation and bird diversity in Pesanggrahan's lowland tropical forest, Malang, Indonesia. Biodiversitas 24 (11): 6169-6176. DOI: 10.13057/biodiv/d241138.
Rohman F, Sulisetijono, Purwanto, Kundariati M, Razak SA, Fardhani I, Purnomo H. 2024. Spatial distribution, age structure, and the impact of habitat conditions on Myristica teysmannii population in the Sempu Island and Malang protected forest, Indonesia: Implication for conservation. Bot Lett 171 (4): 1-14. DOI:10.1080/23818107.2024.2405102.
RStudio Team. 2016. RStudio: Integrated Development for R. RStudio, Inc. http://www.rstudio.com/.
Sadili A, Sundari S. 2017. Keanekaragaman, sebaran, dan pemanfaatan jenis-jenis anggrek (Orchidaceae) di Hutan Bodogol, Taman Nasional Gede Pangrango, Jawa Barat. Jurnal Widyariset 3: 95-106. DOI: 10.14203/widyariset.3.2.2017.95-106. [Indonesian]
Sanger JC, Kirkpatrick JB. 2017. Fine partitioning of epiphyte habitat within Johansson zones in tropical Australian rain forest trees. Biotropica 49: 27-34. DOI: 10.1111/btp.12351.
Sarmento CJ, Petter G, Mendieta-Leiva G, Wagner K, Zotz G, Kreft H. 2015. Branchfall as a demographic filter for epiphyte communities: Lessons from forest floor-based sampling. Plos One 10: e0128019. DOI: 10.1371/journal.pone.0128019.
Setiaji A, Muna A, Jati FP, Putri, F, Semiarti E. 2018. Keanekaragaman anggrek di Daerah Istimewa Yogyakarta. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia. Surakarta, 6 April 2018. [Indonesian]
Seto M, Higa M. 2024. Topographic gradient influences vascular epiphyte occurrence in a small watershed covered by a mature coniferous/broadleaf evergreen mixed forest in Japan. J Veg Sci 35: e13279. DOI: 10.1111/jvs.13279.
Sevgi E, Y?lmaz OY, Çobano?lu ÖG, Tecimen HB, Sevgi O. 2019. Factors influencing epiphytic lichen species distribution in a managed Mediterranean Pinus nigra Arnold Forest. Diversity 11: 59. DOI: 10.3390/d11040059.
Shimadzu H. 2018. On species richness and rarefaction: Size-and coverage-based techniques quantify different characteristics of richness change in biodiversity. J Math Biol 77: 1363-1381. DOI: 10.1007/s00285-018-1255-5.
Steege HT, Cornelissen JHC. 1989. Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21 (4): 331-339. DOI: 10.2307/2388283.
Taylor A, Burns K. 2015. Epiphyte community development throughout tree ontogeny: An island ontogeny framework. J Veg Sci 26: 902-910. DOI: 10.1111/jvs.12289.
Timsina B, Münzbergová Z, Kindlmann P, Bhattarai BP, Shrestha B, Raskoti BB, Rokaya MB. 2024. Associations between epiphytic orchids and their hosts and future perspectives of these in the context of global warming. Diversity 16: 252. DOI: 10.3390/d16040252.
Werner FA, Homeier J, Oesker M, Boy J. 2012. Epiphytic biomass of a tropical montane forest varies with topography. J Trop Ecol 28: 23-31. DOI: 10.1017/S0266467411000526.
Woods CL, Cardelús CL, DeWalt SJ. 2015. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J Ecol 103: 421-430. DOI: 10.1111/1365-2745.12357.
Woods CL. 2017. Primary ecological succession in vascular epiphytes: The species accumulation model. Biotropica 49: 452-460. DOI: 10.1111/btp.12443.
Zotz G. 2007. Johansson revisited: The spatial structure of epiphyte assemblages. J Veg Sci 18: 123-130. DOI: 10.1111/j.1654-1103.2007.tb02522.x.
Zotz G. 2016. Plants on Plants-The Biology of Vascular Epiphytes. Springer International Publishing, Switzerland. DOI: 10.1007/978-3-319-39237-0.