Estimation of genetic parameters and path analysis in sweet-waxy corn (Zea mays var. ceratina)

##plugins.themes.bootstrap3.article.main##

ARYA WIDURA RITONGA
MUKHLISIN
SURJONO HADI SUTJAHJO

Abstract

Abstract. Ritonga AW, Mukhlisin, Sutjahjo SH. 2025. Estimation of genetic parameters and path analysis in sweet-waxy corn (Zea mays var. ceratina). Biodiversitas 26: 879-889. Waxy corn is commonly consumed as a staple food in Eastern Indonesia. The development of hybrid sweet-waxy corn is crucial for enhancing its quality and productivity. The information about genetic parameters and yield-related traits is essential in plant breeding programs to obtain high-yielding hybrids. This study aimed to determine the genetic variability, heritability, and yield-related traits in sweet-waxy corn hybrids. This research was carried out at two locations, Bogor and Lampung, from September 2023 to February 2024. Fifteen sweet-waxy corn hybrids were sown in a randomized complete block design with three replicates. The recorded data were plant height, ear height, stem diameter, leaf width, leaf length, the number of leaves, the number of kernels per row, the number of rows per ear, ear diameter, ear length, and ear weight without husk. The findings revealed that the G1, G7, and G12 hybrids demonstrated superior yield traits at both locations. All observed traits demonstrated high heritability, with the exception of stem diameter and the number of kernels per row. The phenotypic and genotypic coefficients of variation were within the moderate to high, with percentages ranging from 4.15% to 16.69%. Correlation analysis suggested a positive association between ear weight without husks with the other traits. Ear diameter, ear length, and the number of kernels per row had highly positive direct effects on the ear weight without husks, while leaf width had a strong indirect effect through ear diameter (0.415). Thus, these traits may be utilized as selection criteria in corn breeding programs.

##plugins.themes.bootstrap3.article.details##

References
Adham A, Ghaffar MBA, Ikmal AM, Shamsudin NAA. 2022. Genotype × environment interaction and stability analysis of commercial hybrid grain corn genotypes in different environments. Life 12 (11): 1773. DOI: 10.3390/life12111773.
Ahmad L, Pranoto Y, Setyabudi S, Marseno DW. 2022. Amylose content and physical changes in waxy corn starch modification by spontaneous fermentation. E3S Web Conf 344: 03004. DOI: 10.1051/e3sconf/202234403004.
Aman J, Bantte K, Alamerew S, Sbhatu DB. 2020. Correlation and path coefficient analysis of yield and yield components of quality protein maize (Zea mays L.) hybrids at Jimma, Western Ethiopia. Intl J Agron 2020: 9651537. DOI: 10.1155/2020/9651537.
Aprilianti DK, Syukur M, Suwarno WB. 2016. Evaluation of yield components of new sweet corn hybrids in Bogor, Indonesia. J Trop Crop Sci 3 (1): 13-18. DOI: 10.29244/jtcs.3.1.13-18.
Bartaula S, Panthi U, Timilsena K, Acharya SS, Shrestha J. 2019. Variability, heritability and genetic advance of maize (Zea mays L.) genotypes. Res Agric Livest Fish 6 (2): 163-169. DOI: 10.3329/ralf.v6i2.42962.
Begna T. 2020. Genotype by environmental interaction in plant breeding. Int J Agric Biosci 5 (9): 209-215.
Crevelari JA, Durães NNL, Bendia LCR, Vettorazzi JCF, Entringer GC, Ferreira Júnior JA, Pereira MG. 2018. Correlations between agronomic traits and path analysis for silage production in maize hybrids. Bragantia 77: 243-252. DOI: 10.1590/1678-4499.2016512.
Deshmukh SN, Basu MS, Reddy PS. 1986. Genetic variability, character association and path coefficient of quantitative traits in Virginia bunch varieties of groundnut. Indian J Agric Sci 56: 816-821.
Edy, Ibrahim B. 2016. The effort to increase waxy corn production as the main ingredient of corn rice through the application of phosphate solvent extraction and phosphate fertilizer. Agric Agric Sci Procedia 9: 532-537. DOI: 10.1016/j.aaspro.2016.02.173.
Edy, Numba S, Ibrahim B. 2019. Increased amylopectin content potential in corn grains of quality protein maize. IOP Conf Ser Earth Environ Sci 334: 012011. DOI: 10.1088/1755-1315/334/1/012011.
Edy, Takdir A, Numba S, Ibrahim B. 2020. Heritability of agronomic characters of Srikandi Putih x local waxy corn. IOP Conf Ser Earth Environ Sci 484: 012027. DOI:10.1088/1755-1315/484/1/012027.
Fadhli N, Farid M, Azrai M, Nur A, Efendi R, Bambang Priyanto S, Nasruddin AD, Novianti F. 2023. Morphological parameters, heritability, yield component correlation, and multivariate analysis to determine secondary characters in selecting hybrid maize. Biodiversitas 24 (7): 3750-3757. DOI: 10.13057/biodiv/d240712.
Fowo KY, Suminarti NE, Suryanto A. 2019. Response of three waxy corn (Zea mays L. var. ceratina kulesh) varieties and various planting date of intercropped groundnut (Arachis hypogaea L.) in dry field. Intl J Plant Biol 10 (1): 31-34. DOI: 10.4081/pb.2019.7459.
Heryanto FSS, Wirnas D, Ritonga AW. 2022. Diversity of twenty-three sweet corn (Zea mays L. saccharata) varieties in Indonesia. Biodiversitas 23 (11): 6075-6081. DOI: 10.13057/biodiv/d231164.
Kuswantoro H, Adie MM, Putri PH. 2021. Genetic variability, heritability, and genotypic correlation of soybean agronomic characters. Bul Palawija 19 (2): 117. DOI: 10.21082/bulpa.v19n2.2021.p117-125.
Lenka D, Mishra B. 1973. Path coefficient analysis of yield in rice varieties. Indian J Agric Sci 43: 376-379.
Lertrat K, Thongnarin N. 2008. Novel approach to eating quality improvement in local waxy corn: improvement of sweet taste in local waxy corn variety with mixed kernels from super sweet corn. Acta Horticult 769: 145-150. DOI: 10.17660/actahortic.2008.769.19.
Marwan AP, Munandar A, Anwar A, Syarif A, Dewi Hayati PK. 2022. Variability, heritability, and performance of 28 West Sumatran upland rice cultivars, Indonesia. Biodiversitas 23 (2): 1058-1064. DOI: 10.13057/biodiv/d230249.
Nzuve F, Githiri S, Mukunya DM, Gethi J. 2014. Genetic variability and correlation studies of grain yield and related agronomic traits in maize. J Agric Sci 6 (9): 166-176. DOI: 10.5539/jas.v6n9p166.
Özata E. 2020. Yield and quality stabilities of waxy maize genotypes using biplot analysis. Intl J Life Sci Biotechnol 4 (1): 61-89. DOI: 10.38001/ijlsb.811966.
Pangestu DA, Sutjahjo SH, Ritonga AW. 2023. Genetic and morphological diversity of various corn lines for the determination of waxy corn (Zea mays var. ceratina) parents. Biodiversitas 24 (10): 5643-5652. DOI: 10.13057/biodiv/d241046.
Sadimantara GR, Yusuf DN, Febrianti E, Leomo S, Muhidin. 2021. The performance of agronomic traits, genetic variability, and correlation studies for yield and its components in some red rice (Oryza sativa) promising lines. Biodiversitas 22 (9): 3994-4001. DOI: 10.13057/biodiv/d220947.
Sahilatua FO, Suter IK, Wiadnyani AA. S. 2019. Pengaruh umur panen terhadap karakteristik tepung jagung pulut putih (Zea mays var. ceratina). Jurnal Ilmu dan Teknologi Pangan 8 (4): 430-439. DOI: 10.24843/itepa.2019.v08.i04.p09. [Indonesian]
Stansfield WD. 1991. Theory and Problem of Genetics. McGraw-Hill Inc, New York.
Suriani R, Neni Iriany M, A Takdir M. 2017. Analisis sidik lintas karakter morfologi dan komponen hasil jagung hibrida genjah. Buletin Penelitian Tanaman Sereila 1 (2): 24-31. [Indonesian]
Sushmitha U, Bala M, Prajapati M, Kyada A. 2024. Assessment of genetic diversity in cluster bean (Cyamopsis tetragonoloba (L.) Taub). Legum Res-an Intl J 10: 1-12. DOI: 10.18805/lr-5198.
Teressa T, Semahegn Z, Bejiga T. 2021. Multi environments and Genetic-Environmental Interaction (GxE) in plant breeding and its challenges: A review article. Int J Res Stud Agric Sci 7 (4): 11-18. DOI: 10.20431/2454-6224.0704002.
Terfa GN, Gurmu GN. 2020. Genetic variability, heritability and genetic advance in linseed (Linum usitatissimum L) genotypes for seed yield and other agronomic traits. Oil Crop Sci 5 (3): 156-160. DOI: 10.1016/j.ocsci.2020.08.002.
UPOV [Union Internationale Pour la Protection des Obtentions Vegetable]. 2009. International Union for the Protection of New Varieties of Plants. Maize Guidelinesfor the Conduct of Tests for Distinctness, Uniformity and Stability. Geneva, Switzerland.
Wu HY, Qiao MY, Zhang YJ, Kang WJ, Ma QH, Gao HY, Zhang WF, Jiang CD. 2023. Photosynthetic mechanism of maize yield under fluctuating light environments in the field. Plant Physiol 191 (2): 957-973. DOI: 10.1093/plphys/kiac542.
Yahaya MS, Bello I, Unguwanrimi A. 2021. Correlation and path-coefficient analysis for grain yield and agronomic traits of maize (Zea mays L.). Sci World J 16 (1): 10-13.
Yang H, Chai Q, Yin W, Hu F, Qin A, Fan Z, Yu A, Zhao C, Fan H. 2022. Yield photosynthesis and leaf anatomy of maize in inter- and mono-cropping systems at varying plant densities. Crop J 10 (3): 893-903. DOI: 10.1016/j.cj.2021.09.010.
Zakir M. 2018. Review on genotype × environment interaction in plant breeding and agronomic stability of crops. J Biol Agric Healthcare 8 (12): 14-21.

Most read articles by the same author(s)

1 2 > >>