Salicylic acid treatment induced change in the morphological, chlorophyll content, and phytochemical traits in two rice genotypes

##plugins.themes.bootstrap3.article.main##

YAYUK MULYATI
SITI ZUBAIDAH
AFIFUDDIN LATIF ADIREDJO
MOCHAMMAD ROFIQ
NURUL JADID
TRIONO BAGUS SAPUTRO
ISNAWATI
FITRIARI I. MUHAIMIN
FARAPTI
GADIS MEINAR SARI

Abstract

Abstract. Mulyati Y, Zubaidah S, Adiredjo AL, Rofiq M, Jadid N, Saputro TB, Isnawati, Muhaimin FI, Farapti, Sari GM. 2025. Salicylic acid treatment induced change in the morphological traits and the content of chlorophylls and endogenous salicylic acid in two rice genotypes. Biodiversitas 26: 778-788. Salicylic acid (SA) plays a crucial role in rice plant resistance. At the same time, the elicitation mechanisms of its induction are not well understood. The exploration of rice's endogenous SA during the vegetative and generative phases in response to SA elicitation is a new area of study. Similarly, the correlation between SA and rice resistance characteristics is a fresh perspective that this research aims to address. The study focuses on the effect of exogenous salicylic acid (SA) elicitation on plant height, the content of chlorophyll a, b and total chlorophyll, endogenous SA, and the number of productive shoots and filled grains) characters in two rice genotypes, namely genotype A (Situbagendit×Cibogo3) and genotype B (Situbagendit×Ciherang8). SA at concentration 0-2.5 mg L?¹ was applied to the in vitro shoot culture of the rice varieties. The results showed that genotype B had significant content of chlorophyll a, total chlorophyll, endogenous SA content (generative phase), number of productive shoots, and filled rice grains compared to genotype A. SA concentration of 2 mg L?¹ was proven to be the optimal dose that could maximize the resistance and productivity characters of genotype B. Conversely, higher or lower concentrations tended to produce less significant or negative effects. A positive correlation between endogenous SA content and the number of productive shoots was found in genotype B. This study revealed the importance of genetic factors and elicitor concentration in improving rice resistance traits that affect productivity. These findings have practical implications, as they contribute to the development of superior rice cultivars that can support sustainable food security, offering hope for the future of agriculture.

##plugins.themes.bootstrap3.article.details##

References
Adiredjo AL, Damanhuri, Respatijarti. 2019. Experimental hybridization to produce F1 from a cross between gogo-dryland and paddy-field rice cultivars subjected to different environmental conditions in Indonesia. Indian J Agric Res 53: 213-217. DOI: 10.18805/IJARe.A-375.
Ahmed S, Ahmed SF, Biswas A, Sultana A. Issak M. 2024. Salicylic acid and chitosan mitigate high temperature stress of rice via growth improvement, physio-biochemical adjustments and enhanced antioxidant activity. Plant Stress 11: 100343. DOI: 10.1016/j.stress.2023.100343.
Ardiarini NR, Damanhuri, Adiredjo AL. 2022. Genetic variability and gene action for several traits in F4 and F5 population of rice. Plant Breed Biotechnol 10 (1): 31-36. DOI: 10.9787/PBB.2022.10.1.31.
Ali B. 2020. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatal Agric Biotechnol 31: 101884. DOI: 10.1016/j/bcab.2020.101884.
Ali M, Abbasi BH, Ahmad N, Khan H, Ali GS. 2017. Strategies to enhance 21 biologically active-secondary metabolites in cell cultures of Artemisia – current 22 trends. Crit Rev Biotechnol 37: 833-851. DOI: 10.1080/07388551.2016.1261082.
Babendreier D, Tang R, Horgan FG. 2022. Prospects for integrating augmentative and conservation biological control of leaffolders and stemborers in rice. Agronomy 12 (12): 2958. DOI: 10.3390/agronomy12122958.
Bavi K, Khavari?Nejad RA, Najaf F, Ghanati F. 2022. Phenolics and terpenoids change in response to yeast extract and chitosan elicitation in Zataria multifora cell suspension culture. 3 Biotech 12 (8): 163. DOI: 10.1007/s13205-022-03235-x.
Capite AD, Lancaster T, Puthoff D. 2016. Salicylic acid treatment increases 1 the levels of 2 triterpene glycosides in Black Cohosh (Actaea racemosa) rhizomes. J Chem Ecol 3 (42): 13-16. DOI: 10.1007/s10886-015-0655-x.
Chen G, Zheng D, Feng, N, Zhou H, Mu D, Liu L, Zhao L, Shen X, Rao G, Li T. 2021. Effects of exogenous salicylic acid and abscisic acid on growth, photosynthesis and antioxidant system of rice. Chil J Agric Res 82 (1): 21-32. DOI: 10.4067/S0718-58392022000100021.
Chen L, Feng L, Liang X, Li J, Liao G, Zhu L, Fu K, Fan W, Wang S, Liu J. 2022. Characterizing the mechanism of serotonin alleviates rice resistance to brown planthopper Nilaparvata lugens (Homoptera: Delphacidae) nymphs. Agronomy 12 (12): 3191. DOI: 10.3390/qgronomy12123191.
Cohen J. 1988. Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates Publishers, New York.
Ding Y, Zhao JH, Nie Y, Fan B, Wu SJ, Zhang Y, Sheng JP, Shen L, Zhao RR, Tang XM. 2016. Salicylic acid-induced chilling- and oxidative-stress tolerance in relation to gibberellin homeostasis, CBF pathway, and antioxidant enzyme systems in cold-stored tomato fruit. J Agric Food Chem 64: 8200-8206. DOI: 10.1021/acs.jafc.6b02902.
Ding P, Ding Y. 2020. Stories of salicylic acid: A plant defense hormone. Trends Plant Sci 25: 549-565. DOI: 10.1016/j.tplants.2020.01.004.
El-Mergawi R, El-Wahed MSA. 2020. Effect of exogenous salicylic acid or indole acetic acid on their endogenous levels, germination, and growth in maize. Bull Natl Res Centre 44: 167. DOI: 10.1186/s42269-020-00416-7.
El-Alwany AM, Banni A. 2023. Spectrophotometric quantification of endogenous salicylic acid in priming wheat tissue with Puccinia triticina f. sp. tritici. Alq J Med App Sci 5 (1): 119-125. DOI: 10.5281/zenodo.6209951.
El-Beltagi HS, Mohamed HI, Aldaej MI, Al-Khayri JM, Rezk AA, Al-Mssallem, MQ, Sattar MN, Ramadan KMA. 2022. Production and antioxidant activity of secondary metabolites in Hassawi rice (Oryza sativa L.) cell suspension under salicylic acid, yeast extract, and pectin elicitation. Plant Tissue Cult 58: 615-629. DOI: 10.1007/s11627-022-10264-x.
El Sherbiny HA, El-Hashash EF, Abou EMM, Nofal RS, El-Mageed ATA, Bleih EM, El-Saadony MT, El-Tarabily KA, Shaaban A. 2022. Exogenously applied salicylic acid boosts morpho-physiological traits, yield, and water productivity of lowland rice under normal and deficit irrigation. Agronomy 12: 1860. DOI: 10.3390/agronomy12081860.
Fadhli N, Farid M, Azrai M, Nur A, Efendi R, Priyanto SB, Nasruddin A, Novianti F. 2023. Morphological parameters, heritability, yield component correlation, and multivariate analysis to determine secondary characters in selecting hybrid maize. Biodiversitas 24 (7): 3750-3757. DOI: 10.13057/biodiv/d240712.
Fahad S, Hussain S, Saud S, Khan F, Hassan S, Amanullah, Nasim W, Arif M, Wang F, Huang J. 2015. Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202 (2): 139-150. DOI: 10.1111/jac.12148.
Fakhri M, Riyani E, Ekawati AW, Arifin NB, Yuniarti A, Widyawati Y, Saputra IK, Samuel PD, Arif MZ, Hariati AM. 2021. Biomass, pigment production, and nutrient uptake of Chlorella sp. under different photoperiods. Biodiversitas 22 (12): 5344-5349. DOI: 10.13057/biodiv/d221215.
Fattah A, Nuraeni S, Rauf AW. 2020. The vegetation model: An environmentally friendly farming system in the management of rice stem borer in South Sulawesi. Adv Eng Res 194: 30-34. DOI: 10.2991/aer.k.200325.007.
Kalaivani M, Maruthi-Kalaiselvi M, Senthil-Nathan, S. 2021. Seed treatment and foliar application of methyl salicylate (MeSA) as a defense mechanism in rice plants against the pathogenic bacterium, Xanthomonas oryzae pv oryzae. Pestic Biochem Physiol 101: 115-126. DOI: 10.1016/j/pmpp.2017.07.001.
Kalaivani K, Sengottayan SN. 2016. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology, and pathology of resistant and susceptible rice varieties. Sci Rep 6: 34498. DOI: 10.1038/srep34498.
Kavulych Y, Kobyletska M, Romanyuk N, Terek O. 2023. Stress-protective and regulatory properties of salicylic acid and prospects of its use in plant production. Stud Biol 17 (2): 173-200. DOI: 10.30970/sbi.1702.718
Kim Y, Kim S, Shim LS. 2017. Exogenous salicylic acid alleviates salt-stress damage in cucumber under moderate nitrogen conditions by controlling endogenous salicylic acid levels. Hortic Environ Biotechnol 58 (3): 247-253. DOI: 10.1007/s13580-017-0111-7.
Kowalska J, Krzyminska J, Tyburski J. 2022. Yeasts as a potential biological agent in plant disease protection and yield improvement-a short review. Agriculture 12: 1404. DOI: 10.3390/agriculture12091404.
Kohli SK, Handa N, Kaur R, Kumar V, Khanna K, Bakshi P, Singh R, Arora S, Kaur R, Bhardwaj R. Role of Salicylic Acid in Heavy Metal Stress Tolerance: Insight into Underlying Mechanism. Springer, Singapore. DOI: 10.1007/978-981-10-6068-7-7.
Latrianto A, Solichatun, Pitoyo A, Maylendra CT. 2022. The effect of salicilic acid and Benzyl Amino Purine (BAP) concentrations variation on the growth of protocorm Dendrobium stocklebuschii x Dendrobium calophyllum orchids. Pros Sem Nas Masy Biodiv Indon 8 (1): 87-95. DOI: 10.13057/psnmbi/m080112. [Indonesian]
Ling Y, Weilin Z. 2016. Genetic and biochemical mechanisms of rice resistance to planthopper. Plant Cell Rep 35 (8): 1559-1572. DOI: 10.1007/s00299-016-1962-6.
Liang B, Wang H, Yang C, Wang L, Qi L, Guo Z, Chen X. 2022. Salicylic acid is required for broad-spectrum disease resistance in rice. Intl J Mol Sci 23 (3): 1354. DOI: 10.3390/ijms23031354.
Lu HP, Luo T, Fu H, Wang L, Tan Y, Huang J, Wang Q, Ye GY, Getehouse AMR, Lou Y, Shu Q. 2018. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nat Plants 4: 338-344. DOI: 10.1038/s41477-018-0152-7.
Norouzian R, Plonsky L. 2018. Eta- and partial eta-squared in L2 research: A cautionary review and guide to more appropriate usage. Second Lang Res 34 (2): 257-271. DOI: 10.1177/0267658316684904.
Ochoa-Meza LC, Quintana-Obregón EA, Vargas-Arispuro I, Falcón- Rodríguez AB, Aispuro-Hernández E, Virgen-Ortiz JJ, Martínez-Téllez MA. 2021. Oligosaccharins as elicitors of defense responses in wheat. Polymers 13 (18): 3105. DOI: 10.3390/polym13183105.
Pál M, Szalai G, Lantos E, Nagyéri G, Janda T. 2020. Comparative study of salicylic acid contents in young wheat and rice. Comparative study of salicylic acid contents in young wheat and rice plants and their anticancer activities in HepG2 and Caco-2 cells. Biol Futura 71 (3): 265-271. DOI: 10.1007/s42977-020-00026-4.
Paul A, Mriganko K, Pompi D, Bidisha H, Ayekpam R, Nilabh T, Sudeshna R. 2024. Role of salicylic acid in mitigating stress and improving productivity of crops: A review. J Adv Biol Biotechnol 27 (7): 1351-1361. DOI: 10.9734/jabb/2024/v27i71097.
Poór P, Borbély P, Bódi N, Bagyánszki M, Tari I. 2019. Effects of salicylic acid on photosynthetic activity and chloroplast morphology under light and prolonged darkness. Photosynthetica 57 (2): 367-376. DOI: 10.32615/ps.2019.040.
Priya, Dhingra M, Singh CB. 2022. Effect of salicylic acid on growth, physiological traits, yield and water productivity of summer mungbean (Vigna radiata L. Wilczek) under different irrigation regimes. Ann Plant Soil Res 24 (4): 564-570. DOI: 10.47815/apsr.2022.10209.
Shieh G. 2015. Sample size calculations for precise interval estimation of the eta-squared effect size. J Exp Educ 83 (2): 203-217. DOI: 10.1080/00220973.2014.907227.
Simon EV, Hechanova SL, Hernandez JE, Charng-Pei Li, Tulek A, Ahn EK, Jairin J, Choi IR, Sundaram RM, Jena KK, Kim SR. 2023. Available cloned genes and markers for genetic improvement of biotic stress resistance in rice. Front Plant Sci 14: 1247014. DOI: 10.3389/fpls.2023.1247014.
Singh S, Singh BB. 2015. In vitro evaluation of Dichanthium annulatum (Marvel grass) grass hay diets supplemented with browse foliage. Indian J Anim Sci 85: 1348-1353. DOI: 10.56093/ijans.v85i12.54395.
Singh P, Yadav VK, Khan AH, Yadav RK. 2019. To study the response of salicylic acid on growth, physiological traits, yield and yield components of wheat varieties on timely and late sown conditions. Intl J Chem Stud 7 (3): 981-986.
Sorahinobar M, Niknam V, Ebrahimzadeh H, Soltanloo H, Behmanesh M, Enferadi ST. 2016. Central role of salicylic acid in resistance of wheat against Fusarium graminearum. J Plant Growth Regul 35: 477-491. DOI: 10.1007/s00344-015-9554-1.
Sriram M, Manonmani S, Gopalakrishnan C, Sheela V, Shanmugam A, Swamy KMR, Suresh R. 2024. Breeding for brown plant hopper resistance ini rice: Recent updates and future perspective. Mol Biol Rep 51: 1038. DOI: 10.1007/s11033-024-09966-9.
Sudika IW, Soemeinaboedhy IN, Sutresna IW. 2023. Genetic diversity and gain quantitative characters of maize from index-based selection at two dry lands in Lombok, Indonesia. Biodiversitas 24 (1): 11-19. DOI: 10.13057/biodiv/d240102.
Sumardi, Fiani A. 2015. Genetic diversity of sandalwood (Santalum album) and reintroduction to East Nusa Tenggara. Pros Sem Nas Masy Biodiv Indon 1 (3): 409-412. DOI: 10.13057/psnmbi/m010304. [Indonesian]
Tateda C, Zhang Z, Shrestha J, Jelenska J, Chinchilla D, Greenberg JT. 2014. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling. Plant Cell 26 (10): 4171-4187. DOI: 10.1105/tpc.114.131938.
Teh CY, Maziah M, Shaharuddin NA, Ho C. 2018. Efficient in vitro multiple shoots regeneration system from rice shoot apex in recalcitrant Malaysian Indica rice cultivars (Oryza sativa L.). Indian J Biotechnol 17: 504-513.
Trost G, Vi SL, Czesnick H, Lange P, Holton N, Giavalisco P, Zipfel C, Kappel C, Lenhard M. 2014. Arabidopsis poly(A) polymerase PAPS1 limits founder-cell recruitment to organ primordia and suppresses the salicylic acid-independent immune response downstream of EDS1/ PAD4. Plant J 77 (5): 688-699. DOI: 10.1111/tpj.12421.
Torun H, Novak OR, Mikulík J, Strnad M, Ayaz FA. 2022. The effects of exogenous salicylic acid on endogenous phytohormone status in Hordeum vulgare L. under salt stress. Plants 11 (5): 618. DOI: 10.3390/plants11050618.
Wang XD, Bi WS, Jing G, Yu XM, Wang HY, Liu DQ. 2018. Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley. J Integr Agric 17 (11): 2468-2477. DOI: 10.1016/S2095-3119(17)61852-5.
Wang S, Zhou Y, Luo W, Deng L, Yao S, Zeng K. 2020. Primary metabolites analysis of induced citrus fruit disease resistance upon treatment with oligochitosan, salicylic acid and Pichia membranaefaciens. Biol Control 148: 104289. DOI: 10.1016/j.biocontrol.2020.104289.

Most read articles by the same author(s)

<< < 1 2 3