Isolation and characterization of fluorescent Pseudomonas endophyte from lowland creeping-sensitive plant, and its effect on several plant pathogens and plant growth

##plugins.themes.bootstrap3.article.main##

LOEKAS SOESANTO
AYU AZKIYAH
DEVIANA PRIMAYURI
DINI SUNDARI
ENDANG MUGIASTUTI

Abstract

Abstract. Soesanto L, Azkiyah A, Primayuri D, Sundari D, Mugiastuti E. 2025. Isolation and characterization of fluorescent Pseudomonas endophyte from lowland creeping-sensitive plant, and its effect on several plant pathogens and plant growth. Biodiversitas 26: 723-730. Despite declining effectiveness and the risk of pathogen resistance, farmers still prefer synthetic fungicides to control plant disease. A safe alternative to synthetic fungicides is toxins produced by biocontrol agents. This research aimed to isolate the endophytic bacteria, fluorescent Pseudomonas, from lowland creeping-sensitive plants (Mimosa sp.), analyze its morphological and biochemical characteristics, and assess its impact on pathogens and plant growth promoters. The experiment was conducted at the Plant Protection Laboratory, Faculty of Agriculture, Jenderal Soedirman University, from June to September 2024. Samples of creeping-sensitive plant roots were collected from several marginal soils in the lowlands of Banyumas and Cilacap Regencies. The result showed that a total of 15 isolates of endophytic fluorescent Pseudomonas were isolated from the samples. It was also noted that 80% of fluorescent Pseudomonas isolates were able to inhibit the growth of several plant pathogens. Fluorescent Pseudomonas isolates demonstrate significant variability in their ability to inhibit pathogenic fungi and bacteria, with PE13 and PE14 showing the most effective inhibition and enzyme production capabilities and several isolates had a positive effect on plant growth parameters. Fluorescent Pseudomonas exhibited both abilities through the production of several hydrolysis enzymes (lipase, cellulase, protease, and chitinase), HCN, siderophores, and phosphate solubilizing compounds.

##plugins.themes.bootstrap3.article.details##

References
Abdullahi S, Haris H, Zarkasi KZ, Amir HG. 2020. Beneficial bacteria associated with Mimosa pudica and potential to sustain plant growth-promoting traits under heavy metals stress. Bioremediat J 25 (1): 1-21. DOI: 10.1080/10889868.2020.1837724.
Adeleke BS, Babalola OO, Glick BR. 2021. Plant growth-promoting root-colonizing bacterial endophytes. Rhizosphere 20: 100433. DOI: 10.1016/j.rhisph.2021.100433.
Afzal I, Shinwari ZK, Sikandar S, Shahzad S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 221: 36-49. DOI: 10.1016/j.micres.2019.02.001.
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. 2024. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 10 (7): e29128. DOI: 10.1016/j.heliyon.2024.e29128.
Ali S, Akhtar MS, Siraj M, Zaman W. 2024. Molecular communication of microbial plant biostimulants in the rhizosphere under abiotic stress conditions. Intl J Mol Sci 25 (22): 12424. DOI: 10.3390/ijms252212424.
Al-Talebi ZA, Al-Kawaz HS, Mahdi RK, Al-Hassnawi AT, Alta'ee AH, Hadwan AM, Khudhair DA, Hadwan MH. 2022. An optimized protocol for estimating cellulase activity in biological samples. Anal Biochem 655: 114860. DOI: 10.1016/j.ab.2022.114860.
Amaria W, Sinaga MS, Mutaqin KH, Supriadi, Widodo. 2023. Hemolysis and hypersensitive tests ease culture collection management of antagonistic bacteria. J Trop Plant Pests Dis 23 (2): 24-30. DOI: 10.23960/jhptt.22324-30.
Amoo AE, Olanrewaju OS, Babalola OO, Ajilogba CF, Chukwuneme CF, Ojuederie OB, Omomowo OI. 2023. The functionality of plant-microbe interactions in disease suppression. J King Saud Univ Sci 35 (8): 102893. DOI: 10.1016/j.jksus.2023.102893.
Aqel H, Sannan N, Foudah R, Al-Hunaiti A. 2023. Enzyme production and inhibitory potential of Pseudomonas aeruginosa: Contrasting clinical and environmental isolates. Antibiotics 12 (9): 1354. DOI: 10.3390/antibiotics12091354.
Asad SA. 2022. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - a review. Ecol Complex 49: 100978. DOI: 10.1016/j.ecocom.2021.100978.
Ayaz M, Li C-H, Ali Q, Zhao W, Chi Y-K, Shafiq M, Ali F, Yu X-Y, Yu Q, Zhao J-T, Yu J-W, Qi R-D, Huang W-K. 2023. Bacterial and fungal biocontrol agents for plant disease protection: Journey from lab to field, current status, challenges, and global perspectives. Molecules 28 (18): 6735. DOI: 10.3390/molecules28186735.
Barathi S, Sabapathi N, Kandasamy S, Lee J. 2024. Present status of insecticide impacts and eco-friendly approaches for remediation-a review. Environ Res 240: 117432. DOI: 10.1016/j.envres.2023.117432.
Berenguer M-A, Monachon M, Joseph E. 2019. Siderophores: From natural roles to potential applications. Adv Appl Microbiol 106: 193-225. DOI: 10.1016/bs.aambs.2018.12.001.
Bhunia S, Meshram S. 2022. A review on detailed understanding and recent advances of biocontrol agent: Pseudomonas fluorescens. Ecol Environ Conserv 28: S185-S195. DOI: 10.53550/eec.2022.v28i06s.031.
Bonaterra A, Badosa E, Daranas N, Francés J, Roselló G, Montesinos E. 2022. Bacteria as biological control agents of plant diseases. Microorganisms 10 (9): 1759. DOI: 10.3390/microorganisms10091759.
Caballero-Flores G, Pickard JM, Núñez G. 2022. Microbiota-mediated colonization resistance: Mechanisms and regulation. Nat Rev Microbiol 21 (6): 347-360. DOI: 10.1038/s41579-022-00833-7.
Das PP, Singh KRB, Nagpure G, Mansoori A, Singh RP, Ghazi IA, Kumar A, Singh J. 2022. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ Res 214 (1): 113821. DOI: 10.1016/j.envres.2022.113821.
Deb CR, Tatung M. 2024. Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: A review. S Afr J Bot 165: 153-162. DOI: 10.1016/j.sajb.2023.12.031.
Dimki? I, Janakiev T, Petrovi? M, Degrassi G, Fira D. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiol Mol Plant Pathol 117: 101754. DOI: 10.1016/j.pmpp.2021.101754.
Dogan G, Taskin B. 2021. Hydrolytic enzymes producing bacterial endophytes of some Poaceae plants. Pol J Microbiol 70 (3): 297-304. DOI: 10.33073/pjm-2021-026.
Elhaissoufi W, Ghoulam C, Barakat A, Zeroual Y, Bargaz A. 2022. Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. J Adv Res 38: 13-28. DOI: 10.1016/j.jare.2021.08.014.
Fawke S, Doumane M, Schornack S. 2015. Oomycete interactions with plants: Infection strategies and resistance principles. Microbiol Mol Biol Rev 79 (3): 263-280. DOI: 10.1128/MMBR.00010-15.
Gomes AFR, Almedia MC, Sousa E, Resende DISP. 2024. Siderophores and metallophores: Metal complexation weapons to fight environmental pollution. Sci Total Environ 932: 173044. DOI: 10.1016/j.scitotenv.2024.173044.
Gow NAR, Latge J-P, Munro CA. 2017. The fungal cell wall: Structure, biosynthesis, and function. Microbiol Spectr 5 (3): 1-25. DOI: 10.1128/microbiolspec.FUNK-0035-2016.
Gupta D, Sinha SN. 2020. Production of Hydrogen Cyanide (HCN) by purple nonsulfur bacterium isolated from the rice field of West Bengal. IOSR J Pharm Biol 15 (1): 16-26. DOI: 10.9790/3008-1501031626.
Haq IU, Rahim K, Yahya G, Ijaz B, Maryam S, Paker NP. 2024. Eco-smart biocontrol strategies utilizing potent microbes for sustainable management of phytopathogenic diseases. Biotechnol Rep 44: e00859. DOI: 10.1016/j.btre.2024.e00859.
Himpsl SD, Mobley HLT. 2019. Siderophore detection using Chrome Azurol S and Cross-Feeding assays. Methods Mol Biol 2021: 97-108. DOI: 10.1007/978-1-4939-9601-8_10.
Hossain TJ. 2024. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol (Bp) 14: 97-115. DOI: 10.1556/1886.2024.00035.
Johnson ET, Bowman MJ, Gomes RP, Carneiro LC, Dunlap CA. 2023. Identification of 2,4-diacetylphloroglucinol production in the genus Chromobacterium. Sci Rep 13: 14292. DOI: 10.1038/s41598-023-41277-0.
Kandasamy S, Vijayalakshmi VS, Salmen SH, Alfarraj S, Wainwright M, Natarajan D. 2023. Screening, characterization, and optimization of lipase enzyme-producing bacteria isolated from dairy effluents contaminated muddy soil. Appl Nanosci 13: 1443-1451. DOI: 10.1007/s13204-021-02062-5.
Kaur R, Choudhary D, Bali S, Bandral SS, Singh V, Ahmad MA, Rani N, Singh TG, Chandrasekaran B. 2024. Pesticides: An alarming detrimental to health and environment. Sci Total Environ 915: 170113. DOI: 10.1016/j.scitotenv.2024.170113.
Khan MK, Khan BA, Uzair B, Niaz SI, Khan H, Hosny KM, Menaa F. 2021. Development of chitosan-based nanoemulsion gel containing microbial secondary metabolite with effective antifungal activity: In vitro and in vivo characterizations. Intl J Nanomed 16: 8203-8219. DOI: 10.2147/IJN.S338064.
Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci 10: 845. DOI: 10.3389/fpls.2019.00845.
Kour D, Negi R, Khan SS, Kumar S, Kaur S, Kaur T, Sharma B, Dasila H, Kour H, Ramniwas S, Chaubey KK, Neelam DK, Yadav AN. 2024. Microbes mediated induced systemic response in plants: A review. Plant Stress 11: 100334. DOI: 10.1016/j.stress.2023.100334.
Labhasetwar AA, Bramhankar SB, Pillai TS, Isokar SS, Dinkwar GT, Bhure SS, Kharat VM. 2019. Biochemical and physiological characterizations of Pseudomonas fluorescens. Intl J Chem Stud 7 (1): 1785-1788.
Maurya S, Thakur R, Vighnesh R, Suresh S, Dang A, Raj D, Srivastava S. 2024. Eco-friendly management of plant pathogens through secondary metabolites released by fluorescent Pseudomonads. J Pure Appl Microbiol 18 (3): 1471-1488. DOI: 10.22207/JPAM.18.3.40.
Murakami C, Tanaka AR, Sato Y, Kimura Y, Morimoto K. 2021. Easy detection of siderophore production in diluted growth media using an improved CAS reagent. J Microbiol Methods 189: 106310. DOI: 10.1016/j.mimet.2021.106310.
Nazarov PA, Baleev DN, Ivanova MI, Sokolova LM, Karakozova MV. 2020. Infectious plant diseases: Etiology, current status, problems and prospects in plant protection. Acta Naturae 12 (3): 46-59. DOI: 10.32607/actanaturae.11026.
Nufus NH, Wangiyana W, Suliartini NWS. 2022. Isolation and characterization of Mimosa pudica Nodule microbes indigenous from the Dry Land of Pringgabaya, East Lombok. Gontor Agrotech Sci J 8 (1): 18-27. DOI: 10.21111/agrotech.v8i1.8115. [Indonesian]
Olanrewaju OS, Glick BR, Babalola OO. 2017. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33 (11): 197. DOI: 10.1007/s11274-017-2364-9.
Pandey SS. 2023. The role of iron in phytopathogenic microbe-plant interactions: Insights into virulence and host immune response. Plants 12 (17): 3173. DOI: 10.3390/plants12173173.
Qiu D, Ke M, Zhang Q, Zhang F, Lu T, Sun L, Qian H. 2022. Response of microbial antibiotic resistance to pesticides: An emerging health threat. Sci Total Environ 850: 158057. DOI: 10.1016/j.scitotenv.2022.158057.
Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, Dhaliwal HS, Saxena AK. 2020. Endophytic microbes: Biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek 113: 1075-1107. DOI: 10.1007/s10482-020-01429-y.
Richard B, Qi A, Fitt BDL. 2022. Control of crop diseases through Integrated crop management to deliver climate?smart farming systems for low? and high?input crop production. Plant Pathol 71 (1): 187-206. DOI: 10.1111/ppa.13493.
Riseh RS, Vatankhah M, Hassanisaadi M, Barka EA. 2024. Unveiling the role of hydrolytic enzymes from soil biocontrol bacteria in sustainable phytopathogen management. Front Biosci 29 (3): 105. DOI: 10.31083/j.fbl2903105.
Riyaz M, Shah RA, Sivasankaran K. 2021. Pesticide residues: Impacts on fauna and the environment. In: Mendes KF, de Sousa RN, Mielke KC (eds). Biodegration. IntechOpen, London, United Kingdom. DOI: 10.5772/intechopen.98379.
Rizqon AR, Wahyuni WS. 2021. Dipping seedling’s rice root with indigenous microorganisms from Mimosa invisa to control blast disease and increased rice production in Purwoasri Village, Jember. J Perlindungan Tanaman Indonesia 25: 127-132. DOI: 10.22146/jpti.68379.
Rizzo J, Taheraly A, Janbon G. 2021. Structure, composition and biological properties of fungal extracellular vesicles. MicroLife 2: uqab009. DOI: 10.1093/femsml/uqab009.
Roskova Z, Skarohlid R, McGachy L. 2022. Siderophores: An alternative bioremediation strategy?. Sci Total Environ 819: 153144. DOI: 10.1016/j.scitotenv.2022.153144.
Sah S, Krishnani S, Singh R. 2021. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr Res Microb Sci 2: 100084. DOI: 10.1016/j.crmicr.2021.100084.
Sánchez-Cruz R, Vázquez IT, Batista-García RA, Méndez-Santiago EW, Del Rayo Sánchez-Carbente M, Leija A, Lira-Ruan V, Hernández G, Wong-Villarreal A, Folch-Mallol JL. 2019. Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential. Microbiol Res 218: 76-86. DOI: 10.1016/j.micres.2018.09.008.
Sehrawat A, Sindhu SS, Glick BR. 2022. Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere 32 (1): 15-38. DOI: 10.1016/S1002-0160(21)60058-9.
Selangga DGW, Listihani L. 2021. Screening of endophytic bacteria isolated from Mimosa pudica in Bali Island. Sustain Environ Agric Sci 5 (1): 50-57. DOI: 10.22225/seas.5.1.3303.50-57.
Silverio MP, Kraychete GB, Rosado AS, Bonelli RR. 2022. Pseudomonas fluorescens complex and its intrinsic, adaptive, and acquired antimicrobial resistance mechanisms in pristine and human-impacted sites. Antibiotics 11 (8): 985. DOI: 10.3390/antibiotics11080985.
Sravani A, Patil CR. 2023. Isolation and characterization of Pseudomonas fluorescens from forest soils of Uttar Karnataka with high regeneration. Pharm Innov J 12 (9S): 1705-1708.
Stepanov AA, Poshvina DV, Vasilchenko AS. 2022. 2,4-Diacetylphloroglucinol modulates Candida albicans virulence. J Fungi 8 (10): 1018. DOI: 10.3390/jof8101018.
Thind TS. 2022. New insights into fungicide resistance: A growing challenge in crop protection. Indian Phytopathol 75: 927-939. DOI: 10.1007/s42360-022-00550-4.
Tyagi A, Tamang TL, Kashtoh H, Mir RA, Mir ZA, Manzoor S, Manzar N, Gani G, Vishwakarma SK, Almalki MA, Ali S. 2024. A review on biocontrol agents as sustainable approach for crop disease management: Applications, production, and future perspectives. Horticulturae 10 (8): 805. DOI: 10.3390/horticulturae10080805.
Ushamalini C, Balasubramanian A, Anjali KS, Tilak M, Indra N, Swathiga G, Manimaran V. 2022. PGPR-beneficial microbes in agro forestry ecosystem. Pharm Innov SP-11 (7): 3956-3969.
Vanegas NFG, Moreno SMM, Hurtado BEP, Afanador JGM, Aguirre NC, Franco GMR. 2020. Antagonism of plant growth promoting rhizobacteria against the causal agent of the vascular wilting of tomato. Rev Colomb Biotecnol 22 (2): 35-43. DOI: 10.15446/rev.colomb.biote.v22n2.79449.
Veliz EA, Martínez-Hidalgo P, Hirsch AM. 2017. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiol 3 (3): 689-705. DOI: 10.3934/microbiol.2017.3.689.
Wonglom P, Wilailuck DW, Ito S-I, Sunpapao A. 2019. Biological control of Sclerotium fruit rot of snake fruit and stem rot of lettuce by Trichoderma sp. T76-12/2 and the mechanisms involved. Physiol Mol Plant Pathol 107: 1-7. DOI: 10.1016/j.pmpp.2019.04.007.
Xie B, Wei X, Wan C, Zhao W, Song R, Xin S, Song K. 2024. Exploring the biological pathways of siderophores and their multidisciplinary applications: A comprehensive review. Molecules 29 (10): 2318. DOI: 10.3390/molecules29102318.
Yesuf F, Mohammed W, Woldetsadik K. 2021. Effect of rooting media and number of nodes on growth and leaf yield of Chaya (Cnidoscolus aconitifolius McVaugh) at Dire Dawa, Eastern Ethiopia. Cogent Food Agric 7 (1): 1914383. DOI: 10.1080/23311932.2021.1914383.
Zeng Q, Cui C, Wang K, Li F, Li C, Wen S, Yang M. 2023. Pseudomonas fluorescens HC1-07 transformed with phenazine-1-carboxylic acid biosynthesis genes has improved biocontrol activity against Rhizoctonia root rot and Fusarium crown rot of wheat. BioControl 68 (8): 669-679. DOI: 10.1007/s10526-023-10227-0.