Quality of sugar palm sap (Arenga pinnata) from various production centers in West Sumatra, Indonesia

##plugins.themes.bootstrap3.article.main##

TUTY ANGGRAINI
ASWALDI ANWAR
DINI HERVANI
DEDE SUHENDRA
MUHAMMAD PARIKESIT WISNUBROTO
NOFLINDAWATI
ILHAM HAMIDI NASUTION

Abstract

Abstract. Anggraini T, Anwar A, Hervani D, Suhendra D, Wisnubroto MP, Noflindawati, Nst IM. 2025. Quality of sugar palm sap (Arenga pinnata) from various production centers in West Sumatra, Indonesia. Biodiversitas 26: 859-860. Arenga pinnata is a palm tree that produces palm sap, which contains high sugar content and offers a sweet taste and bioactive components that function as antioxidants. These A. pinnata trees grow in West Sumatra, where sugar palm fruit and palm sap sugar are the main horticultural products. In this study, we investigated the quality of palm sap (A. pinnata) from various sap-producing regions thrive in West Sumatra, Indonesia, focusing on their color, total sugar contents, antioxidant activities, total phenolic contents, and Fourier Transform Infra-Red (FTIR) measurements. We compared palm sap sugar from the West Pasaman, Agam, Tanah Datar, Limapuluh Kota, South Solok, and Dharmasraya regions in West Sumatra. The color of palm sugar sap is vibrant yellow-red. The total sugar content ranges from 7-15.73%. The antioxidant activity of palm sap varies based on its concentration, with its total polyphenol content ranging from 46.32-499.32 mg GAE/g, highlighting the potential health benefits of palm sap. We also used the FTIR analysis to identify functional groups in the samples. This finding showed that the quality of palm sap found in West Sumatra varies in terms of quality. Based on its antioxidant content, MNJ A has the highest antioxidant activity, and TLM A has the highest total polyphenols. These results show that total polyphenols are not the only ones that contribute to the antioxidant activity of palm sap.

##plugins.themes.bootstrap3.article.details##

References
Ampofo O, Tsekpo EM, Boateng NA. 2024. Professional networks and access to extension as drivers of sustainable agricultural practices among Ghanaian oil palm farmers. World Develop Sustain 2024: 100160. DOI: 10.1016/j.wds.2024.100160.
Ansar, Nazaruddin, Azis AD, Fudholi A. 2021. Enhancement of bioethanol production from palm sap (Arenga pinnata (Wurmb) Merr) through optimization of Saccharomyces cerevisiae as an inoculum. J Mater Res Technol 14: 548-554. DOI: 10.1016/j.jmrt.2021.06.085.
Arshad S, Rehman T, Saif S, Rajoka MSR, Ranjha MMAN, Hassoun A, Cropotova J, Trif M, Younas A, Aadil RM. 2022. Replacement of refined sugar by natural sweeteners: Focus on potential health benefits. Heliyon 8 (9): e10711. DOI: 10.1016/j.heliyon.2022.e10711.
Barta C, Ruiz-Navas EM, Pérez-Díaz JL, Rucker RA, McAvoy T. 2025. Effect of heating and neutron irradiation on the FTIR dating. Microchemical J 208: 112502. DOI: 10.1016/j.microc.2024.112502.
Betikua E, Olatoye EO, Latinwoa LM. 2023. Bioprocessing of underutilized Artocarpus altilis fruit to bioethanol by Saccharomyces cerevisiae: A fermentation condition improvement study. J Bioresour Bioprod 8: 125-135. DOI: 10.1016/j.jobab.2023.03.002.
Che H, Zhang R, Wang X, Yu H, Shi X, Yi J, Li J, Qi Q, Dong R, Li Q. 2024. Ultrasound-assisted extraction of polyphenols from Phyllanthi Fructus: Comprehensive insights from extraction optimization and antioxidant activity. Ultrason Sonochem 111: 107083. DOI: 10.1016/j.ultsonch.2024.107083.
Chen L, Deng X, Duan H, Tan X, Xie X, Pan X, Guo L, Gao H, Wei H, Zhang H, Luo T, Chen X, Zeng Y. 2023. Water management can alleviate the deterioration of rice quality caused by high canopy humidity. Agric Water Manag 289: 108567. DOI: 10.1016/j.agwat.2023.108567.
Chen Y, Jiang J, Li Y, Xie Y, Cui M, Hu Y, Yin R, Ma X, Niu J, Cheng W, Gao F. 2024. Enhancing physicochemical properties, organic acids, antioxidant capacity, amino acids and volatile compounds for 'Summer Black' grape juice by lactic acid bacteria fermentation. LWT 209: 116791. DOI: 10.1016/j.lwt.2024.116791.
Hai A, Rambabu K, Al Dhaheri AS, Kurup SS, Banat F. 2024. Tapping into palm sap: Insights into extraction practices, quality profiles, fermentation chemistry, and preservation techniques. Heliyon 10 (15): e35611. DOI: 10.1016/j.heliyon.2024.e35611.
Hanis A, Uke A, Sudesh K, Kosugi A. 2024. Accumulation of starch and sugars, and effect on pathogenesis-related proteins in felled oil palm trunks from the replanting period. Ind Crops Prod 218: 118863. DOI: 10.1016/j.indcrop.2024.118863.
Hassan HM, Souka UD, Hassan SM. 2025. Differentiation and quantification of bovine and pork gelatin using UPLC-QTOF and ATR-FTIR spectroscopy: Addressing challenges in mixed gelatin analysis and detection. Food Chem 464 (Pt 3): 141883. DOI: 10.1016/j.foodchem.2024.141883.
Hebbar KB, Pandiselvam R, Manikantan MR, Arivalagan M, Beegum S, Chowdappa P. 2018. Palm sap-quality profiles, fermentation chemistry, and preservation methods. Sugar Technol 20: 621-634. DOI: 10.1007/s12355-018-0597-z.
Hilda L, Syarifuddin. 2019. The utilization of aren plant (Arenga pinnata Merr) as a nutritional rich tanama for food materials. In: Proceeding of 1st International Student Colloquium in Conjunction with SEAAM 2nd Students Mobility Program for Southeast Asia 2019.
Huang Q, Wen T, Fang T, Lao H, Zhou X, Wei T, Luo Y, Xie C, Huang Z, Li K. 2025. A comparative evaluation of the composition and antioxidant activity of free and bound polyphenols in sugarcane tips. Food Chem 463: 141510. DOI: 10.1016/j.foodchem.2024.141510.
Lee-Martínez SN, Luzardo-Ocampo I, Vergara-Castañeda HA, Vasco-Leal JF, Gaytán-Martínez M, Cuellar-Nuñez ML. 2024. Native corn (Zea mays L., cv. 'Elotes Occidentales') polyphenols extract reduced total cholesterol and triglycerides levels, and decreased lipid accumulation in mice fed a high-fat diet. Biomed Pharmacother 180: 117610. DOI: 10.1016/j.biopha.2024.117610.
Limantol AM, Agbemade B, Boamah VE, Badu M, Amponsah KI, Adam FCN, Mohammed RB. 2022. Antioxidant and anti-inflammatory properties of "Limolanii" grass and perceptions of locals on its survival in the era of changing climate. Heliyon 8 (12): e12018. DOI: 10.1016/j.heliyon.2022.e12018.
Manurung MM, Handayani G, Herlina N. 2016. Pembuatan bioetanol dari nira aren (Arenga pinnata merr) menggunakan Saccharomyces cerevisiae. Jurnal Teknik Kimia USU 5 (4): 21-25. [Indonesian]
Mo H-Y, Shan C-H, Chen L-W, Chen X, Han C, Wu D, Tao F-B, Gao H. 2024. Antioxidant vitamins' modification of the adverse health effects induced by phthalate exposure: A scoping review of epidemiological and experimental studies. Ecotoxicol Environ Saf 286: 117190. DOI: 10.1016/j.ecoenv.2024.117190.
Oney-Montalvo J, Uc-Varguez A, Ramírez-Rivera E, Ramírez-Sucre M, Rodríguez-Buenfil I. 2020. Influence of soil composition on the profile and content of polyphenols in habanero peppers (Capsicum chinense Jacq.). Agronomy 10: 1234. DOI: 10.3390/agronomy10091234.
Palachum W, Klangbud WK, Chisti Y. 2023. Novel nutritionally-enriched gummy jelly infused with nipa palm vinegar powder and nipa palm syrup as functional food ingredients. Heliyon 9 (11): e21873. DOI: 10.1016/j.heliyon.2023.e21873
Perveen F, Al-Joufi FA, Zeb R, Qamar N, Jabbar A, Naveed Umar M, Zahoor M. 2024. Comparative antioxidant and antimicrobial activities of Nigella sativa flower, leaf, stem, and seed derived silver nanoparticles. Results Chem 11: 101808. DOI: 10.1016/j.rechem.2024.101808.
Pelealu K, Pontoh J, Suryanto E. 2019. Pengaruh pemanasan terhadap aktivitas antioksidan dalam pembuatan gula aren. Chem Progress 4 (2): 60-65. DOI: 10.35799/cp.4.2.2011.4975. [Indonesian]
Sarkar T, Mukherjee M, Roy S, Chakraborty R. 2023. Palm sap sugar an unconventional source of sugar exploration for bioactive compounds and its role on functional food development. Heliyon 9 (4): e14788. DOI: 10.1016/j.heliyon.2023.e14788.
Sartinah A, Nugrahani I, Ibrahim S, Anggadiredja K. 2022. Potential metabolites of Arecaceae family for the natural anti-osteoarthritis medicine: A review. Heliyon 8 (12): e12039. DOI: 10.1016/j.heliyon.2022.e12039.
Siddique NA. 2025. Antioxidant and antimicrobial potential of Delphinium denudatum Wall. evaluated by validated high-performance thin-layer chromatography and in vitro assays. Kuwait J Sci 52 (6): 100352. DOI: 10.1016/j.kjs.2024.100352.
Tomomatsu A, Itoh T, Wijaya CH, Nasution Z, Kumendong J, Matsuyama A. 1996. Chemical constituents of sugar-containing sap and brown sugar from palm in Indonesia. Jpn J Trop Agr 40 (4): 175-181.
Van Tai N, Van Hao H, Han TTN, Giau TN, Thuy NM, Van Thanh N. 2024. Effect of foaming conditions and drying temperatures on total polyphenol content and drying rate of foam-mat dried banana powder: Modeling and optimization study. J Agric Food Res 18: 101352. DOI: 10.1016/j.jafr.2024.101352.
Victor I. 2015. Processing of Arenga pinnata (Palm) sugar. [Thesis]. Department of Bioresource Engineering Faculty of Agricultural and Environmental Sciences Macdonald Campus of McGill University Sainte-Anne-De-Bellevue, Québec, Canada.
Wiboonsirikul J. 2024. Characterization of Palmyra palm (Borassus flabellifer Linn.) sap after harvest across different pH ranges for production of palm sugar. Appl Food Res 4 (2): 100531. DOI: 10.1016/j.afres.2024.100531.
Yermia Y, Rahayu WP, Suyatma NE, Muhandri T, Purnomo EH. 2024. Rheological characterization of sugar palm fruits (Arenga pinnata) at different maturity levels and concentrations. Indonesian Food Sci Technol J 8 (1): 68-77. DOI: 10.22437/ifstj.v8i1.37940.

Most read articles by the same author(s)