Genetic diversity and population structure of an endemic bee Wallacetrigona incisa in South Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

ANDI GITA MAULIDYAH INDRASWARI SUHRI
PHIKA AINNADYA HASAN
IRNAYANTI BAHAR
HEARTY SALATNAYA
FATHIMAH NURFITHRI HASHIFAH
MUFTI HATUR RAHMAH
SUCI WULANDHANI
HUSNI MUBAROK
WIWIK WIJI ASTUTI

Abstract

Abstract. Suhri AGMI, Hasan PA, Bahar I, Salatnaya H, Hashifah FN, Rahmah MH, Wulandhani S, Mubarok H, Astuti WW. 2025. Genetic diversity and population structure of an endemic bee Wallacetrigona incisa in South Sulawesi, Indonesia. Biodiversitas 26: 861-868. Stingless bees are vital pollinators for biodiversity, yet their genetic diversity and population dynamics in isolated regions like Sulawesi, Indonesia, remain poorly understood. A stingless bee species in the highland regions of Sulawesi, Wallacetrigona incisa, was investigated for its genetic variability, population dynamics, and environmental influences. This study aimed to clarify the genetic basis of the different populations in the highlands and lowlands. Inbreeding rates, population structure, and genetic exchange were assessed using molecular markers. The results showed low levels of inbreeding across populations with minor geographic differences, indicating that gene flow is still occurring between populations. Population structure analysis identified two distinct genetic groups, a highland group and a lowland group, suggesting strong genetic divergence, possibly due to geographical isolation. The association with over-winter survival in this study was the broad climate variables floral abundance and temperature. The results indicate that floral richness, particularly in highland regions, predicts genetic diversity better than temperature. These findings suggest that environmental variables, especially floral diversity, are particularly important for shaping W. incisa population genetics. Our study contributes new knowledge to W. incisa conservation and management by revealing that floral richness, particularly in highland regions, strongly influences genetic diversity and population robustness, underscoring the necessity of preserving diverse floral habitats. Additionally, this research contributes to our knowledge of the impacts of geographic and environmental factors on the genetic diversity of stingless bees and provides a valuable basis for future conservation efforts on a large scale in Sulawesi and other similar ecological areas.

##plugins.themes.bootstrap3.article.details##

References
Aizen MA, Torres A. 2024. The invasion ecology of mutualism. Ann Rev Ecol Evol Syst 55 (1): 41-63. DOI: 10.1146/annurev-ecolsys-102622-031210.
Belsky J, Joshi NK. 2019. Impact of biotic and abiotic stressors on managed and feral bees. Insects 10 (8): 2-42. DOI: 10.3390/insects10080233.
Charlesworth D, Willis JH. 2009. The genetics of inbreeding depression. Nat Rev Genet 10 (11): 783-796. DOI: 10.1038/nrg2664.
Dominguez-Flores T, Budde KB, Carlson JE, Gailing O. 2024. Distance-dependent mating but considerable pollen immigration in an isolated Quercus rubra planting in Germany. Eur J For Res 143 (5): 1447-1460. DOI: 10.1007/s10342-024-01704-x.
Engel MS, Rasmussen C. 2017. A new subgenus of Heterotrigona from New Guinea (Hymenoptera: Apidae). J Melittol 73: 1-16. DOI: 10.17161/jom.v0i73.6673.
Fernández?Martínez M, Berloso F, Corbera J, Garcia?Porta J, Sayol F, Preece C, Sabater F. 2019. Towards a moss sclerophylly continuum: Evolutionary history, water chemistry and climate control traits of hygrophytic mosses. Funct Ecol 33 (12): 2273-2289. DOI: 10.1111/1365-2435.13443.
Francisco FO, Santiago LR, Mizusawa YM, Oldroyd BP, Arias MC. 2017. Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers. Insect Sci 24 (5): 877-890. DOI: 10.1111/1744-7917.12371.
Gaitán?Espitia JD, Hobday AJ. 2021. Evolutionary principles and genetic considerations for guiding conservation interventions under climate change. Glob Chang Biol 27 (3): 475-488. DOI: 10.1111/gcb.15359.
Goulson D, Nicholls E, Botías C, Rotheray EL. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347: 1435-1445. DOI: 10.1126/science.1255957.
Grüter C. 2020. Stingless Bees: Evolution and Diversity of Stingless Bees. Springer, Cham. DOI: 10.1007/978-3-030-60090-7.
Hrncir M, Maia-Silva C, da Silva TVH, Imperatriz-Fonseca VL. 2019. Stingless bees and their adaptations to extreme environments. J Comp Physiol A 205 (3): 415-426. DOI: 10.1007/s00359-019-01327-3.
Kelemen EP, Rehan SM. 2021. Conservation insights from wild bee genetic studies: Geographic differences, susceptibility to inbreeding, and signs of local adaptation. Evol Appl 14 (6): 1485-1496. DOI: 10.1111/eva.13221.
Kumar A, Rajwar N, Tonk T. 2024. Climate change effects on plant-pollinator interactions, reproductive biology and ecosystem services. In: Singh (eds). Forests and Climate Change. Springer Nature Singapore, Singapore. DOI: 10.1007/978-981-97-3905-9_5.
Layek U, Das U, Karmakar P. 2022. The pollination efficiency of a pollinator depends on its foraging strategy, flowering phenology, and the flower characteristics of a plant species. J Asia Pac Entomol 25 (2): 101882. DOI: 10.1016/j.aspen.2022.101882.
Machado T, Viana BF, da Silva CI, Boscolo D. 2020. How landscape composition affects pollen collection by stingless bees? Landsc Ecol 35 (3): 747-759. DOI: 10.1007/s10980-020-00977-y.
Meyer A, Boyer F, Valentini A, Bonin A, Ficetola GF, Beisel J, Bouquerel J, Wagner P, Gaboriaud C, Leese F. 2021. Morphological vs. DNA metabarcoding approaches for the evaluation of stream ecological status with benthic invertebrates: Testing different combinations of markers and strategies of data filtering. Mol Ecol 30 (13): 3203-3220. DOI: 10.1111/mec.15723.
Nannan L, Huamiao L, Yan J, Xingan L, Yang L, Tianjiao W, Jinming H, Qingsheng N, Xiumei X. 2022. Geometric morphology and population genomics provide insights into the adaptive evolution of Apis cerana in Changbai Mountain. BMC Genom 23 (1): 64. DOI: 10.1186/s12864-022-08298-x.
Negreiros AB, Silva GR, Oliveira FAS, Resende HC, Fernandes-Salomão TM, Maggioni R, Pereira FM, Souza BA, Lopes MTR, Diniz FM. 2019. Microsatellite marker discovery in the stingless bee Uruçu-Amarela (Melipona rufiventris Group, Hymenoptera, Meliponini) for population genetic analysis. Insects 10 (12): 450. DOI: 10.3390/insects10120450.
Neov B, Georgieva A, Shumkova R, Radoslavov G, Hristov P. 2019. Biotic and abiotic factors associated with colonies mortalities of managed honey bee (Apis mellifera). Diversity 11 (12): 237. DOI: 10.3390/d11120237.
Nybom H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13: 1143-1155. DOI: 10.1111/j.1365-294X.2004.02141.x.
Purwanto H, Trianto M. 2021. Species description, morphometric measurement and molecular identification of stingless bees (Hymenoptera: Apidae: Meliponini) in meliponiculture industry in West Java Province, Indonesia. Serangga 2021 (1): 13-33.
Rasmussen C, Thomas JC, Engel MS. 2017. A new genus of eastern hemisphere stingless bees (Hymenoptera: Apidae), with a key to the supraspecific groups of Indomalayan and Australasian Meliponini. Am Mus Not 3888: 1-33. DOI: 10.1206/3888.1.
Raymond M, Rousset F. 1995. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J Hered 86 (3): 248-249. DOI: 10.1093/oxfordjournals.jhered.a111573.
Repaci V, Stow AJ, Briscoe DA. 2006. Fine?scale genetic structure, co?founding and multiple mating in the Australian allodapine bee (Exoneura robusta). J Zool 270 (4): 687-691. DOI: 10.1111/j.1469-7998.2006.00191.x.
Roubik DW. 2023. Stingless bee (Apidae: Apinae: Meliponini) ecology. Ann Rev Entomol 68 (1): 231-256. DOI: 10.1146/annurev-ento-120120-103938.
Sayusti T, Raffiudin R, Kahono S, Nagir T. 2020. Stingless bees (Hymenoptera: Apidae) in South and West Sulawesi, Indonesia: Morphology, nest structure, and molecular characteristics. J Apic Res 60 (1): 1-14. DOI: 10.1080/00218839.2020.1816272.
Suhri AGMI, Soesilohadi RH, Agus A, Kahono S. 2021. The effects of introduction of the Sulawesi Endemic Stingless Bee Tetragonula cf. biroi from Sulawesi to Java on foraging behavior, natural enemies, and their productivity. Biodiversitas 22 (12): 5624-5632. DOI: 10.13057/biodiv/d221248.
Toledo-Hernández E, Peña-Chora G, Hernández-Velázquez Vm, Lormendez Cc, Toribio-Jiménez J, Romero-Ramírez Y, León-Rodríguez R. 2022. The stingless bees (Hymenoptera: Apidae: Meliponini): A review of the current threats to their survival. Apidologie 53 (1): 8. DOI: 10.1007/s13592-022-00913-w.
van Velden JL, Travers H, Moyo BHZ, Biggs D. 2020. Using scenarios to understand community-based interventions for bushmeat hunting and consumption in African savannas. Biol Conserv 248: 1-10. DOI: 10.1016/j.biocon.2020.108676.
Vasudev D, Fletcher RJ. 2015. Incorporating movement behavior into conservation prioritization in fragmented landscapes: An example of western hoolock gibbons in Garo Hills, India. Biol Conserv 181: 124-132. DOI: 10.1016/j.biocon.2014.11.021.
Viana BF, Coutinho JG da E, Garibaldi LA, Castagnino GLB, Gramacho KP, Silva FO. 2014. Stingless bees further improve apple pollination and production. J Pollinat Ecol 14: 261-269. DOI: 10.26786/1920-7603(2014)26.