Species (biological, biochemical) features of the causative agent of bovine streptococcosis isolated on the territory of Kazakhstan

##plugins.themes.bootstrap3.article.main##

ALMIRA ILIMBAYEVA
NATALYA YEGOROVA
FLYURA BAKIYEVA
GULZIRA KYDYROVA
SALTANAT NUSSUPOVA

Abstract

Abstract. Ilimbayeva A, Yegorova N, Bakiyeva F, Kydyrova G, Nussupova S. 2025. Species (biological, biochemical) features of the causative agent of bovine streptococcosis isolated on the territory of Kazakhstan. Biodiversitas 26: 1114-1123. The research was focused on identifying and characterizing streptococci responsible for mastitis in cattle, highlighting their pathogenic characteristics and antibiotic resistance. The goal was to develop more effective diagnostic, preventive, and treatment methods to reduce the impact of streptococcal infections on animal husbandry. Molecular techniques like Polymerase Chain Reaction (PCR) and DNA sequencing were used for precise species identification, while microbiological and biochemical analyses provided insights into their pathogenicity and resistance profiles. The identified streptococci included Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Streptococcus bovis complex, Streptococcus pyogenes, Streptococcus zooepidemicus, Streptococcus canis, and Streptococcus suis, and each species exhibited unique characteristics. For example, S. agalactiae showed beta-hemolytic activity, making it highly pathogenic to the mammary gland, while S. dysgalactiae demonstrated both alpha- and beta-hemolytic activity. S. uberis could thrive in high NaCl concentrations and showed notable enzymatic activity, and S. bovis complex exhibited gamma-hemolysis with the ability to grow in saline conditions. Additionally, beta-hemolytic species like S. pyogenes, S. zooepidemicus, S. canis, and S. suis highlighted their roles in respiratory diseases and interspecies transmission. The study underscores the importance of species-specific differentiation in streptococcal infections, as it is crucial for tailoring effective treatment and prevention strategies. This contributes to improved approaches in diagnosing, preventing, and treating mastitis in cattle, particularly in the context of increasing antibiotic resistance.

##plugins.themes.bootstrap3.article.details##

References
Ancuelo A, Perez RH. 2023. Prevalence of Streptococci spp. and unexpected non-streptococci strains associated with bovine mastitis infection in dairy cattle in region IV-A, Philippines. Mindanao J Sci Technol 21 (1): 118-140.
Barsi F, Carra E, Ricchi M, Gnali G, Pisoni G, Russo S, Filippi A, Arrigoni N, Zadoks RN, Garbarino C. 2022. Circulation of Streptococcus agalactiae ST103 in a free stall Italian dairy farm. Appl Environ Microbiol 88 (11): e0038322. DOI: 10.1128/aem.00383-22.
Bonsaglia ECR, Rossi RS, Latosinski G, Rossi BF, Campos FC, Júnior AF, Pantoja JCF, Rall VLM. 2023. Relationship between biofilm production and high somatic cell count in Streptococcus agalactiae isolated from milk of cows with subclinical mastitis. Pathogens 12 (2): 311. DOI: 10.3390/pathogens12020311.
Chen P, Yang J, Wu N, Han B, Kastelic JP, Gao J. 2022. Streptococcus lutetiensis induces autophagy via oxidative stress in bovine mammary epithelial cells. Oxid Med Cell Longev 2022: 2549772. DOI: 10.1155/2022/2549772.
Doan HV, Soltani M, Leitão A, Shafiei S, Asadi S, Lymbery A, Ringø E. 2022. Streptococcosis a re-emerging disease in aquaculture: Significance and phytotherapy. Animals 12: 2443. DOI: 10.3390/ani12182443.
Dong N, Nichols H, Sun Q, Chen X, Zheng J, Guan Z, Zhang H, Davison A, Wezel Y, Li Z, Li B, Liu K, Shao D, Qiu Y, Sun J, Li X, Upton M, Ma Z, Jarvis MA, Wei J. 2023. Bovine herpesvirus-4 based vaccine provides protective immunity against Streptococcus suis disease in a rabbit model. Vaccines 11: 1004. DOI: 10.3390/vaccines11051004.
Eleodoro JI, Muraga L, Vanot RL, Fagnani R. 2023. Identification and antimicrobial susceptibility of milk isolates from cows with subclinical mastitis in the northwest of Paraná State, Brazil. Vet Ital 59 (1): 71-81. DOI: 10.12834/VetIt.2606.16215.1.
Han G, Zhang B, Luo Z, Lu B, Luo Z, Zhang J, Wang Y, Luo Y, Yang Z, Shen L, Yu S, Cao S, Yao X. 2022. Molecular typing and prevalence of antibiotic resistance and virulence genes in Streptococcus agalactiae isolated from Chinese dairy cows with clinical mastitis. PLoS One 17 (5): e0268262. DOI: 10.1371/journal.pone.0268262.
Hassan J, Bag MAS, Kabir A, Ali MW, Hossain M, Rahman MT, Islam MS, Khan MSR. 2022. Genomic diversity of Streptococcus uberis isolated from clinical mastitis of cattle in selected areas of Bangladesh. bioRxiv 2022: 1-35. DOI: 10.1101/2022.12.19.521080.
Keyvan N. 2023. Streptococcus spp. isolated subclinical mastitis and its effect on public health. Turk J Health Sci Life 6 (2): 60-62. DOI: 10.56150/tjhsl.1316960.
Kirimbayeva Z, Abutalip A, Mussayeva A, Kuzembekova G, Yegorova N. 2023. Epizootological monitoring of some bacterial infectious diseases of animals on the territory of the Republic of Kazakhstan. Comp Immunol Microbiol Infect Dis 102: 102061. DOI: 10.1016/j.cimid.2023.102061.
Kukeyeva A, Abdrakhmanov T, Yeszhanova G, Bakisheva Z, Kemeshov Z. 2023. The use of a homeopathic preparation in the treatment of subclinical form of mastitis in cows. Open Vet J 13 (8): 991-1002. DOI: 10.5455/OVJ.2023.v13.i8.5.
Li X-X, Zhang F-Q, Wang S, Duan X-C, Hu D-Y, Gao D-Y, Tao P, Li X-M, Qian P. 2023. Streptococcus suis prophage lysin as a new strategy for combating streptococci-induced mastitis and Streptococcus suis infection. J Antimicrob Chemother 78 (3): 747-756. DOI: 10.1093/jac/dkad006.
Livestock Primary (National-Global-Annual) - FAOSTAT. 2022. https:// data.apps.fao.org/catalog/dataset/livestock-primary-national-global-annual.
Ma X, Chen H, Wang F, Wang S, Wu Y, Ma X, Wei Y, Shao W, Zhao Y. 2023. Molecular characterisation and antimicrobial resistance of Streptococcus agalactiae isolates from dairy farms in China. J Vet Res 67 (2): 161-167. DOI: 10.2478/jvetres-2023-0027.
Ma?eši? N, Fumi? T, Duvnjak S, Ba?i? G, Cvetni? L, Karadjole T, Samardžija M, Habrun B, Lojki? M, Babi? NP, Efendi? M, Cvetni? M, Beni? M. 2022. Agreement of conventional microbiological and molecular identification of streptococci isolated from bovine milk. Vet Arh 92 (4): 381-387. DOI: 10.24099/vet.arhiv.1574.
Maslov DR, Thomas FC, Beleti? A, Kuleš J, Rubi? I, Beni? M, Ba?i? G, Ma?eši? N, Eraghi V, Farkaš V, Roviš TL, Lisni? B, Žub?i? D, Poto?njak D, Mrljak V. 2023. Distinguishing natural infections of the bovine mammary gland by staphylococcus from Streptococcus spp. using quantitative milk proteomics. Animals 13 (11): 1829. DOI: 10.3390/ani13111829.
Mendybayeva AM, Aliyeva GK, Chuzhebayeva GD, Tegza AA, Rychshanova RM. 2022. Antibiotic resistance of enterobacterial pathogens isolated on the territory of the Northern Kazakhstan. Comp Immunol Microbiol Infect Dis 87: 101854. DOI: 10.1016/j.cimid.2022.101854.
Mukhamadieva N, Julanov M, Zainettinova D, Stefanik V, Nurzhumanova Z, Mukataev A, Suychinov A. 2022. Prevalence, diagnosis and improving the effectiveness of therapy of mastitis in cows of dairy farms in East Kazakhstan. Vet Sci 9: 398. DOI: 10.3390/vetsci9080398.
Mussayeva GK, Meldebekov AM, Meldebekova NA, Shaykamal GI, Buralkhiyev BA, Rametov NM, Zhumanov K. 2023. Dairy productivity of Holstein cows of different genetic lines in the conditions of Kostanay Region of Kazakhstan. Pak J Zool 55 (3): 1257-1265. DOI: 10.17582/journal.pjz/20210818080851.
Ospanov Y, Arysbekova A, Kaiyrbek A, Kirpichenko V, Karabassova A. 2024. Determination of risks of occurrence and areas of brucellosis infection spread in the territory of the Republic of Kazakhstan. Intern J Vet Scien 13 (6): 908-913. DOI: 10.47278/journal.ijvs/2024.187.
Ostler JB, Jones C. 2023. The bovine herpesvirus 1 latency-reactivation cycle, a chronic problem in the cattle industry. Viruses 15 (2): 552. DOI: 10.3390/v15020552.
Putnam NE, Youn J-H, Wallace MA, Luethy PM, Burnham C-AD, Butler-Wu S, Dekker JP, Lau AF. 2023. Comparative evaluation of current biochemical-, sequencing-, and proteomic-based identification methods for the Streptococcus bovis group. J Clin Microbiol 61 (4): e0171222. DOI: 10.1128/jcm.01712-22.
Smistad M, Kaspersen H, Franklin-Alming FV, Wolff C, Sølverød L, Porcellato D, Trettenes E, Jørgensen HJ. 2022. Streptococcus dysgalactiae ssp. dysgalactiae in Norwegian bovine dairy herds: Risk factors, sources, and genomic diversity. J Dairy Sci 105 (4): 3574-3587. DOI: 10.3168/jds.2021-21471.
Srithanasuwan A, Tata L, Tananupak W, Jaraja W, Suriyasathaporn W, Chuammitri P. 2023. Exploring the distinct immunological reactions of bovine neutrophils towards major and minor pathogens responsible for mastitis. Intl J Vet Sci Med 11 (1): 106-120. DOI: 10.1080/23144599.2023.2262250.
Umitzhanov M, Kushaliyev KZ, Amanzhol RA, Kanatbaev SG, Kutumbetov LB. 2014. Testing morphological composition of inactivated vaccine against avian pasteurellosis. Life Sci J 11 (9): 363-368.
Wataradee S, Samngamnim S, Boonserm T, Ajariyakhajorn K. 2023. Genotypic and antimicrobial susceptibility of Streptococcus agalactiae causing bovine mastitis in the central region of Thailand. Front Vet Sci 10: 1250436. DOI: 10.3389/fvets.2023.1250436.
Woo SJ, Kim MS, Do MY, Kim NY, Joo MS. 2023. Evaluation of MIC distribution and establishment of epidemiological cut-off values for Streptococcus parauberis isolated from aquatic animals. J Appl Microbiol 134 (7): lxad126. DOI: 10.1093/jambio/lxad126.
Woudstra S, Wente N, Zhang Y, Leimbach S, Gussmann MK, Kirkeby C, Krömker V. 2023. Strain diversity and infection durations of Staphylococcus spp. and Streptococcus spp. causing intramammary infections in dairy cows. J Dairy Sci 106 (6): 4214-4231. DOI: 10.3168/jds.2022-22942.
Zhumakayeva A, Zhubatkanova A, Asauova Z, Tokayeva M, Kemeshov Z. 2023. Efficiency of probiotic culture consortium application for disinfection of dairy farm premises and prevention of mastitis in cows. J Adv Vet Anim Res 10: 185-195. DOI: 10.5455/javar.2023.j668.
Zhumanov KT, Biyashev KB, Biyashev BK, Sansyzbai AR, Valdovska A. 2015. Application of polyvalent hyperimmune serum against mastitis in beef cattle. Biol Med 7 (5): BM-154-15.
Zhylkaidar A, Oryntaev K, Altenov A, Kylpybai E, Chayxmet E. 2021. Prevention of bovine mastitis through vaccination. Arch Razi Inst 76 (5): 1381-1387. DOI: 10.22092/ari.2021.356008.1764.
Zouharova M, Matiašovic J, Gebauer J, Matiašková K, Nedbalcová K. 2023. Survey of genotype diversity, virulence, and antimicrobial resistance genes in mastitis-causing Streptococcus uberis in dairy herds using whole-genome sequencing. Pathogens 12 (12): 1378. DOI: 10.3390/pathogens12121378.