Evaluation of antioxidant sources in fermented cocoa pod husk as animal feed

##plugins.themes.bootstrap3.article.main##

YUNILAS
RIZKA RAMADHANI
ALFONSINA MARTHINA TAPOTUBUN
ELIZABETH JULENY TAPOTUBUN
MUHERI INDRA AJA NASUTION
ARMINA FARIANI
RAYHAN AKBAR

Abstract

Abstract. Yunilas, Ramadhani R, Tapotubun AM, Tapotubun EJ, Nasution MIA, Fariani A, Akbar R. 2025. Evaluation of antioxidant sources in fermented cocoa pod husk as animal feed. Biodiversitas 26: 521-527. Cocoa has pods that have the potential to be used as feed. However, before being applied to livestock, fermentation using local microorganisms is necessary. This study aimed to evaluate antioxidant sources in fermented cocoa pod husk as feed for animal science and fisheries. The design used in this study was a Complete Randomized Design 3 x 3 factorial pattern with 3 replicates. Factor I was the dose of LMO (DM1 = 2%, DM2 = 4%, DM3 = 6%) and Factor II the fermentation time (LF7 = 7 d, LF14 = 14 d, LF21 = 21 d). Results showed that the dose of LMO and the fermentation time had a very significant effect (p<0.01) on phenol content and there was an interaction between the dose of LMO and the fermentation time (p<0.01). The dose of LMO had a very significant effect (p<0.01) and the fermentation time had no effect (p>0.05) on flavonoid content and there was no interaction between the dose of LMO and the fermentation time (p>0.05). The antioxidant content of the best fermented CPH in this study is DM1LF14 with a phytochemical screening was alkaloid (+), phenol (++), flavonoid (++), saponin (-), tannin (+), yield percentage 15.20%, flavonoids 0.20% and phenols 0.87%.

##plugins.themes.bootstrap3.article.details##

References
Adebo OA, Medina-Meza IG. 2020. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 25 (4): 927. DOI: 10.3390/molecules25040927.
Adiwibowo MT, Herayati, Erlangga K, Fitria DA. 2020. Pengaruh metode dan waktu ekstraksi terhadap kualitas dan kuantitas saponin dalam ekstrak buah, daun dan tangkai daun belimbing wuluh (Avverhoa bilimbi L.) untuk aplikasi detergen. Jurnal Integrasi Proses 9 (2): 44-50. DOI: 10.36055/jip.v9i2.9262. [Indonesian]
Alara OR, Abdurahman NH, Ukaegbu CI. 2021. Extraction of phenolic compounds: A review. Curr Res Food Sci 4: 200-214. DOI: 10.1016/j.crfs.2021.03.011.
Andriana A, Jura MR. 2022. Antioxidant activity test of ethanol extract of ripe and young cocoa pods (Theobroma Cacao L.). Jurnal Akademika Kimia 11 (1): 64-71. DOI: 10.22487/j24775185.2022.v11.i1.pp64-71.
Anoraga SB, Shamsudin R, Hamzah MH, Sharif S, Saputro AD. 2024. Cocoa by-products: A comprehensive review on potential uses, waste management, and emerging green technologies for cocoa pod husk utilization. Heliyon 10: e35537. DOI: 10.1016/j.heliyon.2024.e35537.
BPS [Badan Pusat Statistik]. 2020. Statistik kakao Indonesia 2020. Badan Pusat Statistik, Jakarta. [Indonesian]
Bibi N, Shah MH, Khan N, Al-Hashimi A, Elshikh MS, Iqbal A, Ahmad S, Abbasi AM. 2022. Variations in total phenolic, total flavonoid contents, and free radicals’ scavenging potential of onion varieties planted under diverse environmental conditions. Plants 11 (7): 950. DOI: 10.3390/plants11070950.
Chen Y, Luo W, Fu M, Yu Y, Wu J, Xu Y, Li L. 2023. Effects of selected Bacillus strains on the biogenic amines, bioactive ingredients and antioxidant capacity of shuidouchi. Intl J Food Microbiol 388: 110084. DOI: 10.1016/j.ijfoodmicro.2022.110084.
De Montijo-Prieto S, Razola-Díaz MD, Barbieri F, Tabanelli G, Gardini F, Jímenez-Valera M, Ruiz-Bravo A, Verardo V, Gómez-Caravaca AM. 2023. Impact of lactic acid bacteria fermentation on phenolic compounds and antioxidant activity of avocado leaf extracts. Antioxidants 12 (2): 298. DOI: 10.3390/antiox12020298.
De Souza Vandenberghe LP, Valladares-Diestra KK, Bittencourt GA, de Mello AFM, Vásquez ZS, de Oliveira PZ, de Melo Pereira GV, Soccol CR. 2022. Added-value biomolecules' production from cocoa pod husks: A review. Bioresour Technol 344 (Pt B): 126252. DOI: 10.1016/j.biortech.2021.126252.
Devy L, Anita-Sari I, Susilo AW, Wachjar A, Sobir. 2018. Genetic diversity and indirect selection of fine cacao (Theobroma cacao) based on bean color. Biodiversitas 19 (6): 2385-2392. DOI: 10.13057/biodiv/d190650.
Dibacto REK, Tchuente BRT, Nguedjo MW, Tientcheu YMT, Nyobe EC, Edoun FLE, Kamini MFG, Dibanda RF, Medoua GN. 2021. Total polyphenol and flavonoid content and antioxidant capacity of some varieties of Persea americana peels consumed in Cameroon. Scientific World J 2021: 8882594. DOI: 10.1155/2021/8882594.
Dubale S, Kebebe D, Zeynudin A, Abdissa N, Suleman S. 2023. Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. J Exp Pharmacol 15: 51-62. DOI: 10.2147/JEP.S379805.
Elihasridas, Pazla R, Jamarun N, Yanti G, Sari RWW, Ikhlas Z. 2023. Pre-treatments of Sonneratia alba fruit as the potential feed for ruminants using Aspergillus niger at different fermentation times: Tannin concentration, enzyme activity, and total colonies. Intl J Vet Sci 12 (5): 755-761. DOI: 10.47278/journal.ijvs/2023.021.
Faradilla M, Rizal K. 2023. Phytochemical screening analysis of guava leaf extract (Psidium guajava L.) against the content of saponins, tannins, and flavonoids. J Nat Sci Math Res 9 (2): 117-126. DOI: 10.21580/jnsmr.2023.9.2.17835.
Grob L, Ott E, Schnell S, Windhab EJ. 2021. Characterization of endocarp powder derived from cocoa pod. J Food Eng 305: 110591. DOI: 10.1016/j.jfoodeng.2021.110591.
HS ESD, Yudono P, Putra ETS, Purwanto BH. 2020. Physiological and biochemical activities of cherelle wilt on three cocoa clones (Theobroma cacao) under two levels of soil fertilities. Biodiversitas 21 (1): 187-194. DOI: 10.13057/biodiv/d210124.
Hudha AMI, Galih PSBG, Rikardus YDBC, Kartika DDR. 2022. Manufacture of Local Microorganism (LMO) from vegetable waste with nutrition source supply variation. Tibuana 5 (1): 34-40. DOI: 10.36456/tibuana.5.01.5028.34-40.
Indriaty I, Djufri D, Ginting B, Hasballah K. 2023. Phytochemical screening, phenolic and flavonoid content, and antioxidant activity of Rhizophoraceae methanol extracts from Langsa, Aceh, Indonesia. Biodiversitas 24 (5): 2865-2876. DOI: 10.13057/biodiv/d240541.
Irsyad M, Yunilas, Kaban BAEA, Sitorus DR, Ramadhani R, Soraya D. 2023. Palatability test of Urea Molasses Multinutrient Block (UMMB) based on cocoa pods fermented with LMO (Local Microorganisms) in sheep. IOP Conf Ser: Earth Environ Sci 1286: 012027. DOI: 10.1088/1755-1315/1286/1/012027.
Kabatia M, Khumaira A, Bimantara A. 2023. Isolation and characterization of Local Microorganisms (LMO) of bamboo shoots (Dendrocalamus asper) and its effect on the growth of pakcoy plants (Brassica rapa L.). Bioedukasi 21: 152-165. DOI: 10.19184/bioedu.v21i2.39430.
Kholif AE, Gouda GA, Morsy TA, Matloup OH, Sallam SM, Patra AK. 2023. Associative effects between Chlorella vulgaris microalgae and Moringa oleifera leaf silage used at different levels decreased in vitro ruminal greenhouse gas production and altered ruminal fermentation. Environ Sci Pollut Res 30 (3): 6001-6020. DOI: 10.1007/s11356-022-22559-y.
Kiai H, Raiti J, El Abbassi A, Hafidi A. 2020. Chemical profiles of moroccan picholine olives and its brines during spontaneous fermentation. Intl J Fruit Sci 20 (Sup3): S1297-S1312. DOI: 10.1080/15538362.2020.1785986.
Lima GVS, e Gonçalves CG, Pinto ASO, da Silva EM, de Souza JNS, Rogez H. 2024. Impact of post-harvest processing and roasting conditions on the physicochemical properties, phenolic compounds, and antioxidant capacity of cocoa beans from the Brazilian Amazon. LWT 210: 116825. DOI: 10.1016/j.lwt.2024.116825.
Mael SH. 2024. Cocoa pod husk meal as a feed ingredient for livestock. Food Energy Secur 13 (5): e70003. DOI: 10.1002/fes3.70003.
Marlyati DR, Chusniasih D, Nurhayu W. 2024. Antioxidant activity of endophytic bacteria origin from endocarp of cocoa pod husk. Berkala Penelitian Hayati 30: 83-87. DOI: 10.23869/bphjbr.30.2.20244.
Melini F, Melini V. 2021. Impact of fermentation on phenolic compounds and antioxidant capacity of quinoa. Fermentation 7 (1): 20. DOI: 10.3390/fermentation7010020.
Michalak-Tomczyk M, Rymuszka A, Kukula-Koch W, Szwajgier D, Baranowska-Wójcik E, Jachu?a J, Welman-Styk A, K?dzierska K. 2024. Studies on the effects of fermentation on the phenolic profile and biological activity of three cultivars of kale. Molecules 29 (8): 1727. DOI: 10.3390/molecules29081727.
Mustaqim M, Zulkifli Z. 2022. Use of fermented cocoa skin as raw material for carp feed (Cyprinus carpio). Sustain Environ Agric Sci 6 (2): 88-93. DOI: 10.22225/seas.6.2.5748.88-93.
Olugosi OA, Ogunribido T, Agbede JO, Ayeni AO. 2021. Effect of biologically upgraded cocoa pod husk meal on growth, serum and antioxidant properties of two rabbit breeds. Bull Natl Res Cent 45: 11. DOI: 10.1186/s42269-020-00454-1.
Ordoñez-Araque RH, Landines-Vera EF, Urresto-Villegas JC, Caicedo-Jaramillo CF. 2020. Microorganisms during cocoa fermentation: Systematic review. Foods Raw Mater 8 (1): 155-162. DOI: 10.21603/2308-4057-2020-1-155-162.
Polania-Hincapié PA, Suárez JC, Hernández HE, Ramón-Triana VYR, Cuéllar-Álvarez LN, Casanoves F. 2023. Influence of fermentation time on the chemical and functional composition of different cocoa clones from southern Colombia. Fermentation 9 (11): 982. DOI: 10.3390/fermentation9110982.
Rachmawaty, Mu'nisa A, Hasri, Pagarra H, Hartati. 2019. Analysis of phenolic content and antioxidant activity of cocoa pod husk (Theobroma cacao L.). J Phys: Conf Ser 1317: 012087. DOI: 10.1088/1742-6596/1317/1/012087.
Ramos LH, Cisneros-Yupanqui M, Soto DVS, Lante A, Favaro L, Casella S, Basaglia M. 2023. Exploitation of cocoa pod residues for the production of antioxidant, polyhydroxyalkanoates, and ethanol. Fermentation 9 (9): 843. DOI: 10.3390/fermentation9090843.
Rao H, Rao I, Saeed L, Aati HY, Aati S, Zeeshan M, Khan KUR. 2023. Phytochemical analysis and bioactivity assessment of five medicinal plants from Pakistan: Exploring polyphenol contents, antioxidant potential, and antibacterial activities. Saudi J Biol Sci 30 (10): 103783. DOI: 10.1016/j.sjbs.2023.103783.
Rizki WT, Wahyuni WS, Sari RD, Lestari SM, Rahmadevi R. 2024. Tannin extraction from bark of Cinnamomum burmannii and its application for use as natural dye and as antioxidant. Indones J Fund Appl Chem 9 (1): 35-40. DOI: 10.24845/ijfac.v9.i1.35.
Sabdoningrum EK, Hidanah S, Chusniati S, Soeharsono. 2021. Characterization and phytochemical screening of meniran (Phyllanthus niruri Linn) extract's nanoparticles used ball mill method. Pharmacogn J 13 (6): 1568-1572. DOI: 10.5530/pj.2021.13.200.
Savira NII, Nurfadhilah FA, Hariani SA, Maulana AI, Wulandari A. 2024. Phytochemical profiling of ethanol extract from cocoa leaves (Theobroma Cacao L.) using gas chromatography-mass spectrometry. LenteraBio: Berkala Ilmiah Biologi 13 (3): 377-381. DOI: 10.26740/lenterabio.v13n3.p%20377-381.
Seravina, Subandiyono, Sudaryono A. 2019. The effect of dietary fermented cacao pod husk flour o the feed efficiency utilization and growth of carp (Cyprinus carpio). Jurnal Sains Akuakultur Tropis 3: 31-40. DOI: 10.14710/sat.v3i2.3932.
Shalihin MI, Muhaimin, Latief M. 2022. Isolation and identification of an alkaloid compound from bebuas leaves (Premna serratifolia) as an antiinflammatory in white rats (Rattus norvegicus). Jurnal Teknologi Laboratorium 11: 78-94. DOI: 10.29238/teknolabjournal.v11i2.275.
Shodehinde SA, Odubanjo VO, Oladunjoye BM, Oladimeji VA, Olubode SO, Akinnusi PA, Oboh G. 2021. Effect of fermentation on the antioxidant potential and bioactive compounds of cocoa (Theobroma cacao) spp. J Med Herbs 12 (4): 53-59. DOI: 10.30495/medherb.2021.689107.
Soares TF, Oliveira MBPP. 2022. Cocoa by-products: Characterization of bioactive compounds and beneficial health effects. Molecules 27 (5): 1625. DOI: 10.3390/molecules27051625.
Sujono, Hendraningsih L, Wehandaka, Uswatun, Raharjo B. 2020. Evaluating fermentation of cacao seed waste (Theobroma cacao L.) in feed toward consumption of dry matter, crude protein and average daily gain of local sheep rams. Agric Sci Digest 40 (2): 184-188. DOI: 10.18805/ag.D-170.
Sultanayeva L, Karkehabadi S, Zamaratskaia G, Balji Y. 2023. Tannins and flavonoids as feed additives in the diet of ruminants to improve performance and quality of the derived products. A review. Bulg J Agric Sci 29: 522-530.
Suparno A, Arbianto MA, Prabawardani S, Chadikun P, Tata H, Luhulima FDN. 2024. The identification of yield components, genetic variability, and heritability to determine the superior cocoa trees in West Papua, Indonesia. Biodiversitas 25: 2363-2373. DOI: 10.13057/biodiv/d250605.
Tamrin, Faradilla RHF, Ibrahim MN, Rejeki S, Ufrianto, Nurazizah, Cahyani DR. 2020. Understanding the heat stability and solubility of cocoa bean shell extract as antioxidant and antibacterial functional ingredients. Intl Food Res J 27 (4): 660-665.
Tarko T, Duda-Chodak A, Soszka A. 2020. Changes in phenolic compounds and antioxidant activity of fruit musts and fruit wines during simulated digestion. Molecules 25 (23): 5574. DOI: 10.3390/molecules25235574.
Urcan AC, Criste AD, Dezmirean DS, Bobi? O, Bonta V, Burtescu RF, Olah N-K, Cornea-Cipcigan M, M?rg?oan R. 2024. Enhancing antioxidant and antimicrobial activities in bee-collected pollen through solid-state fermentation: A comparative analysis of bioactive compounds. Antioxidants 13 (3): 292. DOI: 10.3390/antiox13030292.
Villacrés E, Quelal MB, Fernández E, Garcìa G, Cueva G, Rosell CM. 2020. Impact of debittering and fermentation processes on the antinutritional and antioxidant compounds in lupinus mutabilis sweet. LWT 131: 109745. DOI: 10.1016/j.lwt.2020.109745.
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. 2021. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front Bioeng Biotechnol 9: 612285. DOI: 10.3389/fbioe.2021.612285.
Yang F, Chen C, Ni D, Yang Y, Tian J, Li Y, Chen S, Ye X, Wang L. 2023. Effects of fermentation on bioactivity and the composition of polyphenols contained in polyphenol-rich foods: A review. Foods 12 (17): 3315. DOI: 10.3390/foods12173315.
Yunilas, Nasution MIA, Mirwandhono E, Qohar AF. 2023. Effect of fermentation time and organic acid level on organoleptic quality and chemical components of black soldier fly prepupae silage. Adv Anim Vet Sci 11 (10): 1651-1658. DOI: 10.17582/journal.aavs/2023/11.10.1651.1658.
Yunilas, Siregar AZ, Mirwhandhono E, Purba A, Fati N, Malvin T. 2022. Potensi dan karakteristik larutan Mikroorganisme Lokal (MOL) berbasis limbah sayur sebagai bioaktivator dalam fermentasi. J Livest Anim Health 5 (2): 53-59. DOI: 10.32530/jlah.v5i2.540. [Indonesian]
Yunilas, Warly L, Marlida Y, Riyanto I. 2013. Potency of indigenous bacteria from oil palm waste in degrades lignocellulose as a sources of inoculum fermented to high fibre feed. Pak J Nutr 12 (9): 851-853. DOI: 10.3923/pjn.2013.851.853.
Zhang Q, Lyu Y, Huang J, Zhang X, Yu N, Wen Z, Chen S. 2020. Antibacterial activity and mechanism of sanguinarine against Providencia rettgeri in vitro. PeerJ 8: e9543. DOI: 10.7717/peerj.9543.