Molecular identification and antimicrobial activities of Bacillus subtilis MS-01 isolated from Indonesian ethnic food lemea

##plugins.themes.bootstrap3.article.main##

MARDHATILLAH SARIYANTI
PEGI MELANTI ADRI
RISKY HADI WIBOWO
AHMAD AZMI NASUTION
THORIQUL HIDAYAH
SIPRIYADI

Abstract

Abstract. Sariyanti M, Adri PM, Wibowo RH, Nasution AA, Hidayah T, Sipriyadi. 2025. Molecular identification and antimicrobial activities of Bacillus subtilis MS-01 isolated from Indonesian ethnic food lemea. Biodiversitas 26: 1069-1074. The community in Bengkulu Province has a variety of traditional foods produced through fermentation, one of which is a bamboo shoot-based dish known locally as lemea. Bacillus subtilis, found in fermented foods, shows great potential as a probiotic due to its ability to inhibit harmful bacteria. Given its genetic diversity, molecular identification is crucial to differentiate between strains. This study represents the first isolation and identification of Bacillus strains from lemea, an ethnically fermented bamboo shoot from the Rejang tribe community in Bengkulu, Indonesia. This study aimed to evaluate the antibacterial activity and perform molecular identification analysis using the 16S ribosomal RNA gene region. The Bacillus isolate was identified using observations of macroscopic and microscopic morphological Lactic Acid Bacteria (LAB). Inhibition tests of Bacillus isolate were conducted using pathogenic bacteria, namely Escherichia coli, Salmonella typhimurium, and Enterococcus faecalis. The isolate demonstrated an exceptionally strong inhibitory effect, particularly against E. faecalis. Molecular identification involved polymerase chain reaction amplifying the 16S rRNA gene, producing an amplicon of approximately 1,300 base pairs. Sequence analysis via BLAST showed 99.84% similarity to B. subtilis strain X2, SSR17, NIBSM OsG1, BaBc-1, and strain LMV in GenBank. Phylogenetic analysis confirmed the isolate’s classification within the order Bacillales and family Bacillaceae. In conclusion, B. subtilis MS-01 was successfully isolated and identified, exhibiting antibacterial potential against both Gram-negative and Gram-positive pathogenic bacteria, with a particularly noteworthy effect against E. faecalis, thereby suggesting its potential as a probiotic with potent antimicrobial properties.

##plugins.themes.bootstrap3.article.details##

References
Bartoš O, Chmel M, Swierczková I. 2024. The overlooked evolutionary dynamics of 16S rRNA revises its role as the “gold standard” for bacterial species identification. Sci Rep 14 (1): 9067. DOI: 10.1038/s41598-024-59667-3.
Clarridge JE. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17 (4): 840-862. DOI: 10.1128/CMR.17.4.840-862.2004.
Cirat R, Capozzi V, Benmechernene Z, Spano G, Grieco F, Fragasso M. 2024. LAB antagonistic activities and their significance in food biotechnology: Molecular mechanisms, food targets, and other related traits of interest. Fermentation 10 (4): 222. DOI: 10.3390/fermentation10040222.
Danilova I, Sharipova M. 2020. The practical potential of Bacilli and their enzymes for industrial production. Front Microbiol 11: 1782. DOI: 10.3389/fmicb.2020.01782.
Davis WW, Stout TR. 1971. Disc plate method of microbiological antibiotic assay. II. Novel procedure offering improved accuracy. Appl Microbiol 22 (4): 666-670. DOI: 10.1128/am.22.4.666-670.1971.
Fiore E, Van Tyne D, Gilmore MS. 2019. Pathogenicity of Enterococci. Microbiol Spectr 7 (4): 1-23. DOI: 10.1128/microbiolspec.GPP3-0053-2018.
Fitri L, Aulia TB, Fauzi A, Kamil GA. 2023. Characterization and screening of urease activity of ureolytic bacteria from landfills soil in Banda Aceh, Indonesia. Biodiversitas 24 (2): 910-915. DOI: 10.13057/biodiv/d240229.
Galdeano CM, Cazorla SI, Dumit JML, Vélez E, Perdigón G. 2019. Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab 74 (2): 115-124. DOI: 10.1159/000496426.
Golnari M, Bahrami N, Milanian Z, Khorasgani MR, Asadollahi MA, Shafiei R, Fatemi SF-A. 2024. Isolation and characterization of novel Bacillus strains with superior probiotic potential: Comparative analysis and safety evaluation. Sci Rep 14 (1): 1457. DOI: 10.1038/s41598-024-51823-z.
Gray DA, Dugar G, Gamba P, Strahl H, Jonker MJ, Hamoen LW. 2019. Extreme slow growth as alternative strategy to survive deep starvation in bacteria. Nat Commun 10 (1): 890. DOI: 10.1038/s41467-019-08719-8.
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. 2022. Bacillales: From taxonomy to biotechnological and industrial perspectives. Microorganisms 10 (12): 2355. DOI: 10.3390/microorganisms10122355.
Hong HA, Duc LH, Cutting SM. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29 (4): 813-835. DOI: 10.1016/j.femsre.2004.12.001.
Hosoi T, Kiuchi K. 2008. Natto: A soybean food made by fermenting cooked soybeans with Bacillus subtilis (Natto). Handbook of Fermented Functional Foods. Second eds. CRC Press, Boca Raton.
Jeyaram K, Romi W, Singh TA, Devi AR, Devi SS. 2010. Bacterial species associated with traditional starter cultures used for fermented bamboo shoot production in Manipur state of India. Intl J Food Microbiol 143 (1-2): 1-8. DOI: 10.1016/j.ijfoodmicro.2010.07.008.
Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10 (1): 5029. DOI: 10.1038/s41467-019-13036-1.
Khushboo, Karnwal A, Malik T. 2023. Characterization and selection of probiotic lactic acid bacteria from different dietary sources for development of functional foods. Front Microbiol 14: 1170725. DOI: 10.3389/fmicb.2023.1170725.
Kumar V, Naik B, Sharma S, Kumar A, Khan JM, Irfan M. 2022. Molecular diversity of microbes associated with fermented bamboo shoots. Trop Life Sci Res 33 (3): 151-164. DOI: 10.21315/tlsr2022.33.3.9.
Kumar V, Jain L, Jain SK, Chaturvedi S, Kaushal P. 2020. Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. South Afr J Bot 134: 50-63. DOI: 10.1016/j.sajb.2020.02.017.
Kurnia M, Amir H, Handayani D. 2020. Isolasi dan identifikasi bakteri asam laktat dari makanan tradisional Suku Rejang di Provinsi Bengkulu: lemea. Jurnal Pendidikan dan Ilmu Kimia 4 (1): 25-32. DOI: 10.33369/atp.v4i1.13705. [Indonesian]
Li Z, Bai Z, Wang D, Zhang W, Zhang M, Lin F, Gao L, Hui B, Zhang H. 2014. Cultivable bacterial diversity and amylase production in three typical Daqus of Chinese spirits. Intl J Food Sci Technol 49 (3): 776-786. DOI: 10.1111/ijfs.12365.
Li Z, Zheng M, Zheng J, Gänzle MG. 2023. Bacillus species in food fermentations: An underappreciated group of organisms for safe use in food fermentations. Curr Opin Food Sci 50: 101007. DOI: 10.1016/j.cofs.2023.101007.
Lingga R, Adibrata S, Roanisca O, Sipriyadi, Wibowo RH, Arsyadi A. 2023. Probiotics potential of lactic acid bacteria isolated from Slender Walking Catfish (Clarias nieuhofii). Biodiversitas 24 (8): 4572-4580. DOI: 10.13057/biodiv/d240839.
Liu S, Zhao L, Li M, Zhu Y, Liang D, Ma Y, Sun L, Zhao G, Tu Q. 2024. Probiotic Bacillus as fermentation agents: Status, potential insights, and future perspectives. Food Chem: X 22: 101465. DOI: 10.1016/j.fochx.2024.101465.
Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64 (2): 795-799. DOI: 10.1128/AEM.64.2.795-799.
Ouchari L, Boukeskasse A, Bouizgarne B, Ouhdouch Y. 2019. Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biol Open 8 (2): 1-7. DOI: 10.1242/bio.035410.
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. 2019. Mechanisms of action of probiotics. Adv Nutr 10 (Suppl_1): S49-S66. DOI: 10.1093/advances/nmy063.
Pokharel P, Dhakal S, Dozois CM. 2023. The diversity of Escherichia coli pathotypes and vaccination strategies against this versatile bacterial pathogen. Microorganisms 11 (2): 344. DOI: 10.3390/microorganisms11020344.
Pourabedin M, Zhao X. 2015. Prebiotics and gut microbiota in chickens. FEMS Microbiol Lett 362 (15): fnv122. DOI: 10.1093/femsle/fnv122.
Prayitno SFA, Suprihadi A, Kusdiyantini E. 2020. Identification of gamma-amino butyric acid isolates lactic acid bacteria results from the isolation of rusip. Biosaintifika 12 (3): 304-310. DOI: 10.15294/biosaintifika.v12i3.24995.
Prihatiningsih N, Arwiyanto T, Hadisutrisno B, Widada J. 2020. Characterization of Bacillus spp. from the rhizosphere of potato Granola varietiy as an antibacterial against Ralstonia solanacearum. Biodiversitas 21 (9): 4199-4204. DOI: 10.13057/biodiv/d210934.
Sanam MUE, Detha AIR, Rohi NK. 2022. Detection of antibacterial activity of lactic acid bacteria, isolated from Sumba mare’s milk, against Bacillus cereus, Staphylococcus aureus, and Escherichia coli. J Adv Vet Anim Res 9 (1): 53-58. DOI: 10.5455/javar.2022.i568.
Suardana IW. 2014. Analysis of nucleotide sequences of the 16S rRNA gene of novel Escherichia coli strains isolated from feces of human and Bali cattle. J Nucleic Acids 2014 (1): 412942. DOI: 10.1155/2014/412942.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 38 (7): 3022-3027. DOI: 10.1093/molbev/msab120.
Tingirikari JMR, Sharma A, Lee H-J. 2024. Ethnic foods: Impact of probiotics on human health and disease treatment. J Ethn Food 11: 31. DOI: 10.1186/s42779-024-00243-5.