Assessment of phosphate-solubilizing microbes isolated from indigenous organic-biofertilizers for enhancing plant growth in acid-stressed

##plugins.themes.bootstrap3.article.main##

NADIA NURANIYA KAMALUDDIN
IRWANDHI
PARTIKA ARUM
YUNUS SETIAWAN
FIQRIAH HANUM KHUMAIRAH
NUR PRIHATININGSIH
TUALAR SIMARMATA

Abstract

Abstract. Kamaluddin NN, Irwandhi, Arum P, Setiawan Y, Khumairah FH, Prihatiningsih N, Simarmata T. 2025. Assessment of phosphate-solubilizing microbes isolated from indigenous organic-biofertilizers for enhancing plant growth in acid-stressed. Biodiversitas 26: 1325-1333. Indonesia is one of the countries that produces enormous amounts of organic waste every year, but most of this organic waste has not been appropriately managed, thereby worsening climate change. One alternative solution that is environmentally friendly and sustainable is converting organic waste into Indigenous Organic Biofertilizers (IOB). This process involves the controlled decomposition of organic waste, which is then enriched with beneficial microbes, such as Phosphate Solubilizing Microbes (PSM). PSM from IOB can be a candidate for a biofertilizer inoculant that can withstand environmental stress, especially acidity stress caused by climate change. This research aimed to screen, characterize, and assess the biochemical activity of isolates and molecularly identify PSM from IOB that are resistant to acidity stress. In this research, characterization was carried out in the form of macroscopic and microscopic observations, resistance to acidity stress, phosphate dissolution index, production of Indole-3-Acetic Acid (IAA), compatibility test, and identification of the 16S rRNA gene. Bacterial isolates with codes F1ZN1, F2P, and F6P, while fungal isolates F4A, F5B, and F5C were the best PSM isolates. This isolate can produce IAA with a high category of around 57.28-105.94 ppm (bacteria) and a medium category of around 18.34-24.33 ppm (fungi). Apart from that, these isolates are compatible with the isolates to work synergistically. Through molecular identification of 16S rRNA sequencing, F1ZN1 was identified as Enterobacter cloacae strain Ec030, F2P was identified as E. cloacae strain UT25, and F6P was identified as E. cloacae strain ABRL064. These results highlight the potential of PSM isolates from IOB as an effective biofertilizer inoculant candidate for increasing plant growth in environmental stress (acidity) amidst climate change.

##plugins.themes.bootstrap3.article.details##

References
Abubakar IR, Maniruzzaman KM, Dano UL, AlShihri FS, AlShammari MS, Ahmed SMS, Al-Gehlani WAG, Alrawaf TI. 2022. Environmental sustainability impacts of solid waste management practices in the global South. Intl J Environ Res Public Health 19 (19): 12717. DOI: 10.3390/ijerph191912717.
Ahmed E, Holmström SJM. 2014. Siderophores in environmental research: Roles and applications. Microb Biotechnol 7 (3): 196-208. DOI: 10.1111/1751-7915.12117.
Amalia DAL, Oedjijono O, Purwanto P. 2020. Eksplorasi bakteri diazotrof dari rizosfer tanaman bawah merah (Allium ascalonicum L.) di Brebes, Jawa Tengah. BioEksakta: Jurnal Ilmiah Biologi Unsoed 2 (3): 464-478. DOI: 10.20884/1.bioe.2020.2.3.3480. [Indonesian]
Ambarita DDM, Mora E, Fitriatin BN, Ruswandi D, Simarmata T. 2024. Biochemical traits and biological assessment of indigenous biofilm- forming rhizophosphate bacteria isolated from salinity and acidity stressed soils to enhance maize growth. J Ecol Eng 25 (9): 328-339. DOI: 10.12911/22998993/191150.
Bappenas. 2021. The economic, social and environmental benefits of a circular economy in Indonesia. In Ministry of National. Planning and Development Indonesia. https://lcdi-indonesia.id/wp-content/uploads/ 2021/02/Full-Report-The-Economic-Social-and-Environmental-Benefits- of-a-Circular-Economy-in-Indonesia.pdf. [Indonesian]
Chaudhary P, Xu M, Ahamad L, Chaudhary A, Kumar G, Adeleke BS, Verma KK, Hu D-M, Širi? I, Kumar P, Popescu SM, Fayssal SA. 2023. Application of synthetic consortia for improvement of soil fertility, pollution remediation, and agricultural productivity: A review. Agronomy 13 (3): 643. DOI: 10.3390/agronomy13030643.
D'Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TCJ. 2014. Volatiles produced by soil?borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37 (4): 813-826. DOI: 10.1111/pce.12220.
Etesami H, Alikhani HA, Hosseini HM. 2015. Indole-3-Acetic Acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2: 72-78. DOI: 10.1016/j.mex.2015.02.008.
Feng S, Qiu Y, Huang Z, Yin Y, Zhang H, Zhu D, Tong Y, Yang H. 2021. The adaptation mechanisms of Acidithiobacillus caldus CCTCC M 2018054 to extreme acid stress: Bioleaching performance, physiology, and transcriptomics. Environ Res 199: 111341. DOI: 10.1016/j.envres.2021.111341.
Fitriatin BN, Lukita DS, Ambarita DDM, Setiawati MR, Simarmata T. 2024. Screening and bioassay of halotolerant phosphate solubilizing bacteria using rice (Oryza sativa L.) on salinity medium. Bulg J Agric Sci 30 (5): 777-783.
Fu S-F, Wei J-Y, Chen H-W, Liu Y-Y, Lu H-Y, Chou J-Y. 2015. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav 10 (8): e1048052. DOI: 10.1080/15592324.2015.1048052.
Guardiola-Márquez CE, Santos-Ramírez MT, Figueroa-Montes ML, Valencia-de Los Cobos EO, Stamatis-Félix IJ, Navarro-López DE, Jacobo-Velázquez DA. 2023. Identification and characterization of beneficial soil microbial strains for the formulation of biofertilizers based on native plant growth-promoting microorganisms isolated from northern Mexico. Plants 12 (18): 3262. DOI: 10.3390/plants12183262.
Gupta M, Kiran S, Gulati A, Singh B, Tewari R. 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol Res 167 (6): 358-363. DOI: 10.1016/j.micres.2012.02.004.
Hii YS, San CY, Lau SW, Danquah MK. 2020. Isolation and characterisation of phosphate solubilizing microorganisms from peat. Biocatal Agric Biotechnol 26: 101643. DOI: 10.1016/j.bcab.2020.101643.
Hindersah R, Kamaluddin NN, Fauzia SR, Setiawati MR, Simarmata T. 2022. Nitrogen-fixing bacteria and organic ameliorant for corn growth and yield increment in inceptisols. J Degrad Min Lands Manag 9 (3): 3445-3452. DOI: 10.15243/jdmlm.2022.093.3445.
Hu D, Zhang J, Yang Y, Yu D, Zhang H, Zhang D. 2025. Molecular mechanisms underlying plant responses to low phosphate stress and potential applications in crop improvement. New Crops 2025: 100064. DOI: 10.1016/j.ncrops.2024.100064.
Irwandhi I, Kamaluddin NN, Khumairah FH, Prihatiningsih N, Simarmata T. 2025. Assessment of local wisdom biofertilizer formulas on enhancing microbial diversity and photosynthate allocation in acid-stressed maize. Asian J Agric 9: 112-121. DOI: 10.13057/asianjagric/g090112.
Irwandhi I, Khumairah FH, Sofyan ET, Kamaluddin NN, Nurbaity A, Herdiyantoro D, Simarmata T. 2024a. Current status and the significance of local wisdom biofertilizer in enhancing soil health and crop productivity for sustainable agriculture: A systematic literature review. Jurnal Kultivasi 23 (3): 287-298. DOI: 10.24198/kultivasi.v23i3.56018.
Irwandhi I, Prihatiningsih N, Abraham S, Isroni M, Sativa RG, Kamaluddin NN, Khumairah FH, Maulana H, Sofyan ET, Simarmata T. 2024b. Diversity of bacterial isolates as biocontrol agents against Fusarium oxysporum f. sp. lycopersici. Biodiversitas 25 (10): 3403-3411. DOI: 10.13057/biodiv/d251002.
Johan PD, Ahmed OH, Omar L, Hasbullah NA. 2021. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy 11 (10): 2010. DOI: 10.3390/agronomy11102010.
Khalifa AYZ, Alsyeeh A-M, Almalki MA, Saleh FA. 2016. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi J Biol Sci 23 (1): 79-86. DOI: 10.1016/j.sjbs.2015.06.008.
Khumairah FH, Nurbaity A, Fitriatin BN, Jingga A, Simarmata T. 2018. In vitro test and bioassay of selected Phosphate Solubilizing Bacteria (PSB) by using maize seedlings. IOP Conf Ser: Earth Environ Sci 205: 012019. DOI: 10.1088/1755-1315/205/1/012019.
KLH [Kementerian Lingkungan Hidup]. 2025. Capaian Kinerja Pengelolaan Sampah. https://sipsn.menlhk.go.id/sipsn/. [Indonesian]
Kumar BL, Gopal DVRS. 2015. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5 (6): 867-876. DOI: 10.1007/s13205-015-0293-6.
Kumar M, Prasad V. 2025. Growth and functional evaluation of Enterobacter cloacae under salinity stress. Biocatal Agric Biotechnol 64: 103495. DOI: 10.1016/j.bcab.2025.103495.
Liu X, Li X, Li Y, Li R, Xie Z. 2017. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline-alkaline soils and their effect on wheat growth. Can J Microbiol 63 (3): 228-237. DOI: 10.1139/cjm-2016-0511.
Pande A, Pandey P, Mehra S, Singh M, Kaushik S. 2017. Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J Genet Eng Biotechnol 15 (2): 379-391. DOI: 10.1016/j.jgeb.2017.06.005.
Pane E, Marwazi M. 2020. Trials of local microorganism composition (MOL) toward growth and production plant lettuce (Lactuca sativa). Budapest Intl Res Exact Sci 2: 44-51. DOI: 10.33258/birex.v2i1.703.
Peng T, Ma L, Feng X, Tao J, Nan M, Liu Y, Li J, Shen L, Wu X, Yu R, Liu X, Qiu G, Weimin Zeng W. 2017. Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage. PLoS One 12 (5): e0178008. DOI: 10.1371/journal.pone.0178008.
Rafique M, Sultan T, Ortas I, Chaudhary HJ. 2017. Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. Soil Sci Plant Nutr 63 (5): 460-469. DOI: 10.1080/00380768.2017.1373599.
Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M. 2016. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183: 26-41. DOI: 10.1016/j.micres.2015.11.007.
Rawat P, Shankhdhar D, Shankhdhar SC. 2020. Plant growth-promoting rhizobacteria: A booster for ameliorating soil health and agriculture production. In: Giri B, Varma A (eds). Soil Health. Soil Biology. Springer, Cham. DOI: 10.1007/978-3-030-44364-1_3.
Retnowati Y, Katili AS. 2021. Identification of fermentative bacteria on local microorganisms of golden snail (Pomacea canaliculata Lamarck, 1822). Biodiversitas 22 (2): 778-784. DOI: 10.13057/biodiv/d220231.
Roeswitawati D, Ningsih YU, Muhidin. 2018. The effect of local microorganism (MOL) concentration of banana hump and fruit waste on the growth and yield of broccoli plants (Brassica oleracea). In: Proceedings of the International Conference on Food, Agriculture and Natural Resources (FANRes 2018). Universitas Muhammadiyah Yogyakarta, Yogyakarta, 12-14 September 2018. DOI: 10.2991/fanres-18.2018.62.
Rose TJ, Kretzschmar T, Liu L, Lancaster G, Wissuwa M. 2016. Phosphorus deficiency alters nutrient accumulation patterns and grain nutritional quality in rice. Agronomy 6 (4): 52. DOI: 10.3390/agronomy6040052.
Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paré PW, Bais HP. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3 (2): 130-138. DOI: 10.4161/cib.3.2.10584.
Satyaprakash M, Nikitha T, Reddi EUB, Sadhana B, Vani SS. 2017. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Intl J Curr Microbiol Appl Sci 6 (4): 2133-2144. DOI: 10.20546/ijcmas.2017.604.251.
Sembiring M, Sabrina T. 2022. Diversity of phosphate solubilizing bacteria and fungi from andisol soil affected by the eruption of Mount Sinabung, North Sumatra, Indonesia. Biodiversitas 23 (2): 714-720. DOI: 10.13057/biodiv/d230216.
Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2: 587. DOI: 10.1186/2193-1801-2-587.
Shi R-Y, Hong Z-N, Li J-Y, Jiang J, Baquy MA-A, Xu R-K, Qian W. 2017. Mechanisms for increasing the pH buffering capacity of an acidic Ultisol by crop residue-derived biochars. J Agric Food Chem 65 (37): 8111-8119. DOI: 10.1021/acs.jafc.7b02266.
Sodiq AH, Setiawati MR, Santosa DA, Widayat D. 2021. Molecular identification of isolates from local microorganisms as potential biofertilizer. Sains Tanah-J Soil Sci Agroclimatol 18 (2): 188-193. DOI: 10.20961/stjssa.v18i2.44476.
Sumiahadi A, Acar R. 2019. O 136. Forage crops in acid soils of Indonesia. In: Dursun S, Ayturan ZC, Kunt F (eds). Proceeding Book of ISESER; International Symposium for Environmental Science and Engineering Research. Konya, Turkey, 25-27 May 2019.
Sun W, Li S, Zhang G, Fu G, Qi H, Li T. 2023. Effects of climate change and anthropogenic activities on soil pH in grassland regions on the Tibetan Plateau. Glob Ecol Conserv 45: e02532. DOI: 10.1016/j.gecco.2023.e02532.
Tariq MR, Shaheen F, Mustafa S, Ali S, Fatima A, Shafiq M, Safdar W, Sheas MN, Hameed A, Nasir MA. 2022. Phosphate solubilizing microorganisms isolated from medicinal plants improve growth of mint. PeerJ 10: e13782. DOI: 10.7717/peerj.13782.
Tripathi N, Sapra A. 2021. Gram Staining. Statpearls, Treasure Island, FL, USA. https://europepmc.org/article/NBK/nbk562156.
Waluyo, Kharisma DB. 2023. Circular economy and food waste problems in Indonesia: Lessons from the policies of leading Countries. Cogent Soc Sci 9 (1): 2202938. DOI: 10.1080/23311886.2023.2202938.
Wang C, Pan G, Lu X, Qi W. 2023. Phosphorus solubilizing microorganisms: Potential promoters of agricultural and environmental engineering. Front Bioeng Biotechnol 11: 1181078. DOI: 10.3389/fbioe.2023.1181078.
Wei H, Chen C, Ma X, Zhang Y, Han J, Mei H, Yu S. 2017. Comparative analysis of expression profiles of panicle development among tolerant and sensitive rice in response to drought stress. Front Plant Sci 8: 437. DOI: 10.3389/fpls.2017.00437.
Whitelaw MA. 1999. Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69: 99-151. DOI: 10.1016/S0065-2113(08)60948-7.
Yuliana M. 2021. The effect of local microorganism (MOL) as liquid organic fertilizer to the growth of Ipomea reptans Poir. J Biota 7 (1): 51-56. DOI: 10.19109/Biota.v7i1.7010.
Zuluaga MYA, de Oliveira ALM, Valentinuzzi F, Jayme NS, Monterisi S, Fattorini R, Cesco S, Pii Y. 2023. An insight into the role of the organic acids produced by Enterobacter sp. strain 15S in solubilizing tricalcium phosphate: In situ study on cucumber. BMC Microbiol 23 (1): 184. DOI: 10.1186/s12866-023-02918-6.

Most read articles by the same author(s)