Coexistence effect of rotifer, Brachionus rotundiformis and copepod, Oithona similis in culture media on growth performance and eggs production
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Suminto, Chilmawati D. 2019. Coexistence effect of rotifer, Brachionus rotundiformis and copepod, Oithona similis in culture media on growth performance and eggs production. Biodiversitas 20: 2396-2402. The effect of Brachionus rotundiformis, and Oithonasimilis coexistence in culture media on the growth performance and egg production were examined and it aims to know the best coexistence percentage which provides the highest growth performance and egg production of O. similis and B. rotundiformis. Experiment method was carried out in this research by using a completely randomized design (CRD) with 5 treatments and 4 replications. The treatments were percentage through mix culture ratio of O.similis. and B. rotundiformis whereas those treatments were with ratio of 100% and 0% (A); 90% and 10% (B); 80% and 20% (C); 70% and 30% (D); and 60% and 40% (E), respectively. The results showed that, B. rotundiformis had a significant effect (p <0.05) on final density, population growth rate and eggs production of Oithona sp.; coexistence of 60% Oithona sp. and 40% B. rotundiformis provides the best final density for Oithona sp. (27.40±0.34 ind./ml) and B. rotundiformis (30.23±0.21 ind./ml); the highest population growth rate of Oithona sp. (0.29±0.02 ind./day) and B. rotundiformis (0.36±0.03 ind./day); and the highest egg production of Oithona sp. (18.83±0.76 eggs/ind) and B. rotundiformis (3.30±0.24 eggs/ind.). However, the mix culture of O.similis. and B. Rotundiformis may be applied in co-existent semi-mass or mass culture.
##plugins.themes.bootstrap3.article.details##
Anitha PS, George RM. 2006. The taxonomy of Brachionus plicatilis species complex (Rotifera: Monogononta) from the Southern Kerala (India) with a note on their reproductive preferences. J. Mar. Biol. Ass. India, 48 (I) : 6 – 13.
Broach JS, Cassiano EJ, Watson CA. 2017. Baseline culture parameters for the cyclopoid copepod Oithona colcarva: a potensial new live feed for marine fish larviculture. Aquaculture Research 48: 4461-4469. https://doi.org/10.1111/are.13271
Chilmawati D, Suminto. 2010. Pengaruh Penggunaan Ragi Roti, Vitamin B12, dan Vitamin C sebagai Bahan Pengkaya Pakan Terhadap Pertambahan Populasi Brachionus Plicatilis. Jurnal Saintek Perikanan, Vol.5 No. 2 Februari 2010, ISSN: 1858-4748, Hal. 42-48 (in Indonesian and English abstract)
Chilmawati D, Suminto. 2016. The effect of different diet of phytoplankton cells on growth performance of copepod, oithona sp. in semi-mass culture, aquatic procedia. The Author(s) 7: 39-45. https://doi.org/10.1016/j.aqpro.2016.07.005
Chilmawati D, Hutabarat J, Anggoro S, Suminto S. 2019. Biomolecular Identification and Optimization of Growth Performance and Egg Production in Oithona sp. Under Different Salinity Culture Conditions. AACL Bioflux Vol. 12, Issue 2: 575-585.
Cheng S, Samba K, Kumar R, Chung-Su K, Jiang-Shiou H. 2011. Effect of salinity, food level, and the presence of microcrustcean zooplankters on the population dynamics of rotifer brancionus rotundiformis. Hydrobiologia 666: 289-299. https://doi.org/10.1007/s10750-011-0615-6
Creswell L. 2010 Phytoplankton Culture for Aquaculture Feed. Southern Regional Aquaculture Center. SRAC Publication No. 5004. 13 pp.
Drillet G, Jørgensen NOG, Sørensen TF, Ramløv H, Hansen BW. 2006. Biochemical and technical observations supporting the use of copepods as relevant live feed organisms in marine larviculture. Aquac. Res. 37, 756–772.
Drillet G, Frouel S, Sichlau MH, Jepsen PM, Hojgaard JK, Joarder AK, Hansen BW. 2011. Status and recommendation on marine copepod cultivation for use as live feed. Aquaculture 315:155-166. https://doi.10.1016/j.aquaculture.2011.02.027
Ghozali I. 2006. Aplikasi Analisis Multivariate dengan Program SPSS. Ed. IV, Badan Penerbit Universitas Diponegoro, Semarang, 315 hlm.
HagiwaraA, Jung M, Sato T, Hirayama K. 1995. Interspecific relations between marine rotifer Brachionus rotundiformis and zooplankton species contaminating in the rotifer mass culture tank. Fisheries Science 61(4): 623-627. doi: 10.1109/JSEE.2012.00021
Hansen BW, Drillet G, Kozmer A, Madsen KV, Pedersen MF, Sorensen TE. 2010. Temperature Effects on Copepods Egg Hatching: Does Acclimatization Matter?. Journal of Plankton Research 32(3): 305-315.
Hirayama K Satuito CG. 1991. The Nutritional Improvement of Baker’s Yeast for the Growth of the Rotifer, Branchionus plicatilis. In : Fulks, W and K.L. Main (eds) 1991. Rotifer and Microalgae Culture Systems. Proceedings of a U.S.- Asia Workshop. The Oceanic Institute Makapuu. Honolulu, Hawaii.
Jeyarad N, Santhanam P. 2013. Influence of Algal Diet on Population Density, Egg Production and Hatching Succesion of the Calanoid Copepod, Paracalanus parvus (Claus, 1863). J. Algal Biomass Utln. (1):1-8. 43.
Jung MM, Hagiwara A, Hirayama K. 1997. Interspecific interactions in the marine rotifer microcosm. Hidrobiologia 358: 121-126. doi:10.1023/A:1003120120931
Jung M. 2012. Survival Strategies of the Rotifer Brachionus rotundiformis for Coexisting with the Copepod Apocyclops borneoensis in Laboratory Culture. Fish Aquat Sci (2012) 57-62.
Lavens P, Sorgeloos P. 1996. Introduction. In: P. Lavens and P. Sorgeloos (Eds.). Manual on the Production and Use of Live Food for Aquaculture. FAO Fisheris Technical Paper. No. 361, Food and Agriculture Organization of the United Nations, Rome, pp. 1-6.
Lee KW, Park HG, Lee SM, Kang HK. 2006 Effect of Diets on The Growth of The Brackish Water Cyclopoid Copoped Paracyclopina nana Smirnov. Aquaculture, 256: 346–353. https://doi.org/10.1016/j.aquaculture.2006.01.015
Lubzens E. 1987. Raising rotifers for use in Aquaculture. Hydrobiologia. 147:254255.
Ma Z, Guo H, Zhang HN, Bai Z. 2013. State of art for larval rearing of grouper. International Journal of Aquaculture 3(13):63-72. https://doi.10.5376/ija.2013.03.0013
Melianawati R, Pratiwi R, Puniawati N, Pujiastuti P. 2015. The Effect of Various Kind of Live Feeds to Digestive Enzymes Activity of Coral Trout Plectropomus leopardus (Lacepede, 1802) Larvae. International Journal of Fisheries and Aquatic Studies” 2015; 3(2) : 83-88
Molejon OGH, Lajonchere A. 2003. Culture experiments with oithona oculata farran, 1913 (copepoda: cyclopoida), and it’s advantages as food for marine fish larvae. Aquaculture 219:471-483. https://doi.org/10.1016/S0044-8486(02)00644-0
NERC (Natural Environment Research Council). 2016. Zooplankton Identification Manual for Northern European Seas (ZIMNES), http://192.171.193.133/index.php, Diakses tanggal 15 Juni 2016 pukul 19.00 WIB
Noyon M, Froneman PW. 2013. Variability in the egg production rates of the calanoid copepod, pseudodiaptomus hessei in a South African estuary in relation to environmental factors. Estuarine, Coastal and Shelf Science 30: 1-11.
Pal SW, Singh NK, Azam K. 2013 Evaluation of Relationship between Light intensity (Lux) and Growth of Chaetoceros muelleri. Oceanography, 1(3):1-4. https://doi.10.4172/2332-2632.1000111
Puello-Cruz AC, Mezo-Villalobos S, González-Rodríguez B, Voltolina D. 2009. Culture of the Calanoid Copepod Pseudodiaptomus euryhalinus44.
Rusdi I. 1997. Pertumbuhan populasi rotifer (Brachionus rotundiformis) Type-S pada suhu yang berbeda di Laboratorium. J. Penelitian Perikanan Indonesia, 3(4):62-66
Snell T. 1991. Improving the Design of Mass Culture System for Rotifer, Branchionus plicatilis. In : Fulks, W and K.L. Main (eds) 1991. Rotifer and 45.
ShieldsRJ, Bell JG, Luizi FS, Gara B, Bromage RN, Sargent JR. 1999. Natural copepods are superior toenriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pig-mentation and retinal morphology: relation to dietaryessential fatty acids. Journal of Nutrition 129, 1186–94.
Shields RJ, Kotani T, Molnar A, Marion K, KobashigawaJ, Tamg L. 2005. Intensive Cultivation of a subtropical paracalanid, copepod, Parvocalanus sp., as Prey for Small Marine Fish Larvae, in Lee C-S O’Bryen P J and Marcus N.H. (eds), Copepods in Aquaculture. Oxford: Blackwell Publishing, 209-223.
Stottrup J, Shields R, Gillespie M, Gara, MB, Sargent JR, Bell JG, Henderson RJ, Tocher DR, Sutherland R, Naess T, Mangor Jensen A, Naas K, Vander Meeran T, Harboe T, Sanchez FS, Soegelos P, Dhert P, Fitzgerald R. 1998. The Production and Use of Coipepod in Larval Rearing of Halibut, Turbot and Cod. Bull. Aquacult. Assoc. Canada, 4:41-46.
Suminto, Chilmawati D, Harwanto D. 2018. Effect of Different Doses of Fermented Organic Feed on the Growth Performance of Oithona sp. in Semi-Mass Culture Condition. OMNI-AKUATIKA Fisheries And Marine Sciences For Nature Protection And Community Welfare Vol. 14, No. 3: 53-59
Tamaru CS, Sheng-LeeC, Ako H. 1991. Production of Rotifers for Striped Mullet Larvae. In : Fulks, W and K.L. Main (eds) 1991. Rotifer and Microalgae Culture Systems. Proceedings of a U.S.- Asia Workshop. The Oceanic Institute Makapuu.Honolulu, Hawaii. Pp 134-141
Toledo JD, Golez MS, Doi M,Ohno A. 1999. Use of Copepod nauplii during early feeding stage of grouper Epinephelus coioides. Fisheries Science 65 (3) : 390 – 397.
Uchima M. 1979. Morphological Observation of Development Stages in Oithona brevicornis (Copepod, Cyclopoid). Bulletin of Plankton Society of Japan, 26(2): 59-76.
Watanabe T, Kitajima C, Fujita S. 1983. Nutritional Values of Live Organisms Used in Japan for Mass Propagation of Fish: a Review. Aquaculture (34) : 115-143.
Witt U, Quantz G., Kuhlmann D, Kattner G. 1984. Survival and Growth of Turbot Larvae Scopthalmus maximus L reare don Different Food Organisms With Special Regard To Long-Chain Polyunsaturated Fatty Acids. Aquaculture Engineering (3): 177-190.
Zamora-TerolS, Swalethorp R, Kjellerup S, Saiz E, Nielsen TG. 2014. Population dynamics andproduction of the small copepod Oithonasp. in a subarctic fjord of West Greenland. Polar Biology 37: 953-965. https://doi.10.1007/s00300-014-1493-y