Carbon stock assessment using forest canopy density mapper in agroforestry land in Berau, East Kalimantan, Indonesia

##plugins.themes.bootstrap3.article.main##

ADISTI PERMATASARI PUTRI HARTOYO
LILIK B. PRASETYO
ISKANDAR Z. SIREGAR
SUPRIYANTO
IDA THEILADE
ULFAH J. SIREGAR

Abstract

Abstract. Hartoyo APP, Prasetyo LB, Siregar IZ, Supriyanto, Theilade I, Siregar UJ. 2019. Carbon stock assessment using forest canopy density mapper in agroforestry land in Berau, East Kalimantan, Indonesia. Biodiversitas 20: 2661-2676. In the Reducing Emissions from Deforestation and forest Degradation (REDD+) program, remote sensing is the most important tool for measuring forest cover and carbon dynamic, including the utilization of software Forest Canopy Density (FCD) mapper. However, there have been rarely untested the accuracy of FCD applied in agroforestry landscapes to support carbon stock assessment compared to conventional field measurement data. This research was aimed to investigate the correlation between: (i) the value of FCD (%) and tree stand density (N/ha), (ii) the value of FCD (%) and basal area (m2/ha), (iii) the value of FCD (%) and total carbon stock (Mg C/ha), and iv) total carbon stock and percentage of canopy closure (%). Tree stand density, basal area, carbon stock and canopy profile were conventionally measured by trained members of local communities. The results of this study showed that the R2 between FCD and tree density was 37.7% (r = 61.4%), while the R2 between FCD and the basal area was 3.33% (r = 18.3%). The result of normality and heteroscedasticity tests showed that FCD was more accurate and precise in estimating the tree stand density model than the basal area model. Total carbon stock differed significantly (p<0.1) from tree density with R2 = 27.7% (r = 27.3%). Total carbon can be predicted using FCD with total carbon (Mg C/ha) = 13.005 + 0.826 FCD. Our findings suggest that FCD can be used as a new method to estimate tree density and total carbon stock cheaply, efficiently and accurately to support carbon stock assessment in agroforest practices. In carbon assessment, total carbon stock can also be estimated using canopy closure measurement.

##plugins.themes.bootstrap3.article.details##

References
Ardiansyah M, Rosalina U, Boer R. 2005. Estimasi biomassa dan stok karbon atas permukaan dengan menggunakan integrasi teknologi penginderaan jauh dan sistem informasi geografi. Bogor (ID): IPB Pr.
Baynes J. 2007. Using FCD Mapper software and landsat images to assess forest canopy density in landscapes in Australia and the Philippines. Annal Trop Res. 29(1):9–20.
Bottcher H, Eisbrenner K, Fritz S, Kindermann G, Kraxner F, McCallum I, Obersteiner M. 2009. An assessment of monitoring requirements and costs of 'Reduced Emissions from Deforestation and Degradation. Carbon Balance and Management. 4:7.
Boyd DS, Danson FM. 2005. Satellite remote sensing of forest resources: three decades of research development. Progress in Physical Geography. 29:1-26.
Boyd DS, Foody GM, Ripple WJ. 2002. Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing. Appl. Geography. 22: 375–392.
Crow TR, Schlaegel BE. 1988. A guide to using regression equations for estimating tree biomass. Northern Journal of Applied Forestry. 5:15, 22.
De Fries R, Achard F, Brown S, Herold M, Murdiyarso D, Schlamadinger B, de Souza JrC. 2007. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environmental Science & Policy. 10 (4): 385–394.
De Fries R, Hansen M, Steininger M, Dubayah R, Sohlberg R, Townshend J, 1997. Subpixel forest cover in central Africa from multisensor, multitemporal data. Remote Sensing Environ. 60: 228–246.
Department of Forestry. 1992. Manual Kehutanan. Jakarta (ID): Departemen Kehutanan Republik Indonesia.
Dorren LK, Maier AB, Seijmonsbergen AC. 2003. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. Forest Ecol. Manage. 183: 31–46.
Duro DC, Coops NC, Wulder MA, Han T. 2007. Development of a large area biodiversity monitoring system driven by remote sensing, Progress in Physical Geography. 31: 235-260.
Ford JP, Casey DJ. 1988. Shuttle radar mapping with diverse incidence angles in the rainforest of Borneo. Int. J. Remote Sensing. 9: 927–943.
Gao X, Huete AR, Ni W, Miura T. 2000. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sensing Environ. 74 (3): 609–620.
Gong P, Miller JR, Spanner M. 1994. Forest canopy closure from classification and spectral unmixing of scene components-multisensor evaluation of an open canopy. IEEE Trans. Geosci. Remote Sensing. 32 (5): 1067–1080.
Goetz S, Baccini A, Laporte N, Johns T, Walker W, Kellndorfer J, Houghton R, Sun M. 2009. Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance and Management. 4: 2.
Hahn JT. 1984. Tree volume and biomass equations for the Lake States St. Paul. USDA FS Res. Pap. NC-250.
[IPCC] Intergovernmental Panel on Climate Change. 2006. Guidelines for National Greenhouse Gas Inventories. Japan (JPN): Institute for Global Environmental Strategies (IGES), Hayama, Japan.
Iverson LR, Cook EA, Graham RL. 1989. A technique for extrapolating and validating forest cover across large regions: calibrating AVHRR data with TM data. Int. J. Remote Sensing. 10: 1805–1812.
Joshi C, De Leeuw J, Skidmore AK. 2005. Remotely sensed estimation of forest canopy density: a comparison of the performance of four methods. International Journal of Applied Earth Observation and Geoinformation. 8(2): 84-95.
Khairiah RN, Prasetyo LB, Setiawan Y, Kosmaryandi N. 2016. Monitoring model of payment for environmental service (PES) implementation in Cidanau Watershed with stand denstiy approach. Procedia Environmental Sciences. 33: 269-278.
Muhammad A, Prasetyo LB, Kartono AP. 2014. Pemetaan perubahan forest canopy density di KPH Kuningan. Seminar Nasional Penginderaan Jauh 2014 “Deteksi Parameter Geobiofisik dan Diseminasi Penginderaan Jauh”.
Ohmann LF, Grigal DF. 1985. Plant species biomass estimates for 13 upland community types of northeastern Minnesota. St. Paul (MN). USDA FS Res.Bulle. RB-NC-88.
Panta M, Kim M. 2006. Spatio-temporal dynamic alteration of forest canopy density based on site associated factors: view from tropical forest of Nepal. Korean J Remote Sens. 22(5):1–11.
Perala DA, Alban DH. 1994. Allometric biomass estimations foraspen-dominated ecosystems in the Upper Great Lakes. USDA FS Res.Pap. NC-134.
Prasad PRC, Nagabhatla N, Reddy CS, Gupta S, Rajan KS, Raza SH, Dutt CBS. 2009. Assessing forest canopy closure in a geospatial medium to address management concerns for tropical islands south east Asia. Environ Monit Assess. doi:10.1007/s10661-008-0717-4.
Prince SD. 1987. Measurement of canopy interception of solar radiation by stands of trees in sparsely wooded savanna (Sudan). Int. J. Remote Sensing, 8: 1747–1766.
Regulation of Indonesia Ministry of Environmental and Forestry Number P.70/MENLHK/SETJEN/KUM.1/12/2017. 2017. Tata Cara Pelaksanaan Reducing Emissions from Deforestation and Forest Degradation, Role of Conservation, Sustainable Management of Forest and Enhancement of Forest Carbon Stocks. Jakarta (ID): Ministry of Environmental and Forestry Republic of Indonesia.
Rikimaru A. 1996. Landsat TM data processing guide for forest canopy density mapping and monitoring model. In: International Tropical Timber Organization (ITTO) workshop on utilization of remote sensing in site assessment and planning for rehabilitation of logged-over forest, Bangkok, Thailand. pp. 1–8.
Rikimaru A, Miyatake S. 1997. Development of forest canopy density mapping and monitoring model using indices of vegetation, bare soil and shadow [internet]. Available at https://www.geospatialworld.net/article/development-of-forest-canopy-density-mapping-and-monitoring-model-using-indices-of-vegetation-bare-soil-and-shadow/. Acessed on 7 March 2017.
Rikimaru A, Roy PS, Miyatake S. 2002. Tropical forest cover density mapping. Tropical Ecology. 43 (1): 39-47.
Rosadi D. 2011. Analisis Ekonometrika & Runtun Waktu Terapan dengan R. Yogyakarta (ID): Andi Offset.
Soerianegara I. 1996. Ekologi, Ekologisme dan Pengelolaan Sumberdaya Hutan. Bogor (ID): Fakultas Kehutanan IPB.
Souza JC, Firestone CL, Silva LM, Roberts D. 2003. Mapping forest degradation in the Eastern Amazon from SPOT-4 through spectral mixture models. Remote Sensing Environ. 87: 494–506.
Strand H, Höft R, Stritthold J, Miles L, Horning N, Fosnight E, Turner W. 2007. Sourcebook on Remote Sensing and Biodiversity Indicators. Canada (US): CBD, Montreal. 203 p.
Tiwari AK, Mehta JS, Goel OP, Singh JS. 1986. Geo-forestry of landslide-affected areas in a part of central Himalaya. Environ. Conserv. 13: 299–309.
Tohir NR, Prasetyo LB, Kartono AP. 2014. Pemetaan perubahan kerapatan kanopi hutan di hutan rakyat, Kabupaten Kuningan, Jawa Barat. Seminar Nasional Penginderaan Jauh 2014 “Deteksi Parameter Geobiofisik dan Diseminasi Penginderaan Jauh”.
Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M. 2003 Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution. 18: 306-314.
Walpole RE. 1992. Introduction to Statistics. 3rd edition. Jakarta (ID): PT Gramedia Pustaka Utama.
Wibowo A, Ratnasari D, Sukojo BM, Harianto T, Djajadih YS. 2010. Ekstraksi kandungan air kanopi daun tanaman padi dengan data hyperspectral. Geomatika. 1(16): 21-31.
Wu Y, Strahler AH. 1994. Remote estimation of crown size, stand density, and biomass on the Oregon Transect. Ecological Society of America. 4(2): 299-312.
Xu L, Shi Y, Fang H, Zhou G, Xu X, Zhou Y, Tao J, Ji B, Xu J Li C, Chen L. 2018. Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems. Science of the Total Environment. 631–632: 619–626.
Zhu Z. Evans DL. 1994. US forest types and predicted percent forest cover from AVHRR data. Photogrammetric Eng. Remote Sensing. 60: 525–553.

Most read articles by the same author(s)

1 2 3 > >>