Anatomical structure, flavonoid content, and antioxidant activity of Rhodomyrtus tomentosa leaves and fruits on different age and maturity level




Abstract. Kuntorini EM, Nugroho LH, Maryani, Nuringtyas TR. 2019. Anatomical structure, flavonoid content, and antioxidant activity of Rhodomyrtus tomentosa leaves and fruits on different age and maturity level. Biodiversitas 20: 3619-3625. Karamunting (Rhodomyrtus tomentosa (Aiton.) Hassk.) is a native plant to southeast Asian countries, and is a well-known medicinal plant used to treat colic diarrhea, wounds, heartburn, abscesses, gynecopathy, and as a pain killer. However, the use of R. tomentosa has not been optimized. This research aimed to observe the anatomical structure, the location, and distribution of flavonoid and to find out the antioxidant activity based on the leaves age and the fruit maturity. Anatomical slides preparation of leaves and fruits were made using the paraffin embedding method with safranin staining. The distribution of flavonoid was analyzed by histochemical test and antioxidant activity was done with DPPH (1,1-diphenyl-2-picrylhydrazyl) method. Leaf anatomical structure shows that the leaf bifacial (dorsiventral) consisted of upper epidermis, mesophyll (palisade and sponge), collateral vascular bundle, parenchyma midrib, abaxial epidermis, globular oil cavity, and non-glandular trichome. Transverse section of green fruit consists of exocarp (thin outer layer), mesocarp (thick inner layer, soft and runny) and endocarp (thin false septa) layers. The histochemical test showed that flavonoid was observed in the leaf epidermis, mesophyll, vascular bundles, secretory cavity, parenchyma and in all fruit types exocarp, mesocarp, endocarp. Antioxidant activity showed that the extract of the young leaves (IC50 = 14.67 ppm) was stronger than the old leaves (IC50 = 19.86 ppm). The antioxidant activity of the purple fruits extract (IC50 = 12.98 ppm) was stronger than the red fruits (IC50 = 28.63 ppm) and the green fruits (IC50 = 48.36 ppm) but it was weaker than quercetin (IC50 = 1.29 ppm). The purple fruit had the highest antioxidant activity compared to other extracts. This information will be useful for developing karamunting as a potential resource of natural antioxidants for functional foods and health products.


Agustina, N., Purwestri, Y. A., & Nugroho, L. H. 2016. Antioxidant activity and histochemical analysis of Acalypha indica L and Acalypha wilkesiana Muell Arg. vegetative and generative organs. International Journal of Pharmacognosy and Phytochemical Research. 8: 1657–1662.
Charisma S.L, Rahayu W.S, Wahyuingrum R. 2018. “Determination of Sun Protection Factor and Antioxidant Properties of Cream Formulation of Kencur (Kaempferia Galanga L) and Temu Kunci (Boesenbergia Pandurata (Roxb.) Schlecht) Rhi.” Pharmaciana 8 (2): 321–30.
Cui, C., S. Zhang, L.You, J. Ren, W. Luo, W. Chen, & M. Zhao. 2013. Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins. Journal of Food Chemistry. 139: 1-8.
Dai, G.H., M. Nicole, C. Andary, C.Martinez, E. Bresson, B. Boher, J.E. Daniel & J.P. Geiger. 1996. Flavonoids accumulate in cell walls, middle lamella and callose-rich papillae during an incompatible interaction between Xanthomonas Campetris pv. malvacerum and cotton. Physiological and Molecular Plant Pathology. 49: 285-306.
Geetha, K. M., Sridhar, C., & Murugan, V. 2010. Antioxidant and healing effect of aqueous alcoholic extract of Rhodomyrtus tomentosa (Ait.) Hassk on chronic gastric ulcers in rats. Journal of Pharmacy Research. 3: 2860–2862.
Hamid, H. A., Mutazah, S. S. Z.R., & Yusoff, M. M. 2017. Rhodomyrtus tomentosa: A phytochemical and pharmacological review. Asian Journal of Pharmaceutical and Clinical Research.10 : 10–16.
Harborne, J.B. 1987. Phytochemical Methods. ITB, Bandung.
Hermanto, C., Luh, N., Indriani, P., & Hadiati, S. 2013. Keragaman dan Kekayaan Buah Tropika Nusantara. IAARD Press. Jakarta.
Jeong, D., W. S Yang,., Y. Yang, G. Nam, J. H. Kim, D. H. Yoon, H. J. Noh, S. Lee, T. W. Kim, G. Sung, & J. Y Cho. 2013. In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract. Journal of Ethnopharmacology, 146 : 205-213.
Kantacoht, C., Chantaranothai, P., & Thammathaworn, A. 2007. Contributions to the leaf anatomy and taxonomy of thai Myrtaceae. The Natural History Journal of Chulalongkorn University. 7 : 35–45.
Kiernan, J.A. 1990. Histological & Histochemical Methods: Theory & Practice.2nd ed. Pergamon, England.
Kusuma, I., Nurul Ainiyati, W. S. 2016. Search for biological activities from an invasive shrub species rose myrtle (Rhodomyrtus tomentosa). Nusantara Bioscience. 8 : 55–59.
Lai, Ha, T. N., Herent, M. F., Quetin-Leclercq, J., Nguyen, T. B. T., Rogez, H., André, C. M. 2013. Piceatannol, a potent bioactive stilbene, as major phenolic component in Rhodomyrtus tomentosa. Food Chemistry. 138: 1421–1430.
Lai, T. N. H., André, C., Rogez, H., Mignolet, E., Nguyen, T. B. T., & Larondelle, Y. 2015. Nutritional composition and antioxidant properties of the sim fruit (Rhodomyrtus tomentosa). Food Chemistry.168: 410–416.
Lavanya, G., Voravuthikunchai, S. P., & Towatana, N. H. 2012. Acetone Extract from Rhodomyrtus tomentosa: A Potent Natural Antioxidant. Hindawi Publishing Corporation. Songkhla.
Limsuwan, S., Hesseling-Meinders, A., Piyawan Voravuthikunchai, S., Maarten Van Dijl, J., & Kayser, O. 2011. potential antibiotic and anti-infective effects of rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. on Streptococcus pyogenes as revealed by proteomics. Phytomedicine.18: 934–940.
Liu, G. L., Guo, H. H., & Sun, Y. M. 2012. Optimization of The Extraction of Anthocyanins from The Fruit Skin of Rhodomyrtus tomentosa (Ait.) Hassk and Identification of Anthocyanins in The Extract Using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). International Journal of Molecular Sciences. 13: 6292–6302.
Maulina, R. 2014. Determination of Sun ProtectionFfactor (SPF) and Antioxidant Activity of Batang Bangkal (Naucleasubdita) In Vitro Skin Extract. [Thesis]. Lambung Mangkurat University, Banjarbaru. [Indonesia]
Molyneux, P. 2004. The use of the stable free radikal diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Journal Science of Technology.26 : 211-219.
Mordmuang, A., S. Shankar, U. Chethanond, & S. P. Voravuthikunchai, 2015. Effect of Rhodomyrtus tomentosa leaf extract on Staphylococcal adhesion and invasion in bovine udder epidermal tissue model. Journal of Nutrients 7: 8503-8517.
Nugroho, L.H., 2017. Struktur dan Produk Jaringan Sekretori Tumbuhan. Gadjah Mada University Press. Yogyakarta.
Ong, H.C. 2004. Fruit: Food & Medicine Benefits. Yeohprinco SDN. BHD, Klang.
Pereira, D.M, Valentão.P, Pereira J.A., & Andrade P.B. 2009. Phenolics: from chemistry to biology. Molecules, 14: 2202-2211.
Ramadan, B.C., S. A. Aziz, & M. Ghulamahdi.2015. The potential of bioactive levels available in kepel leaves (Stelechocarpus burahol). Bulletin Research of Spices and Medicinal Plants (BUL LITTRO). 26 : 99-108.
Ruzin, S.E. 1999. Plant Microtechnique and Microscopy.Oxford University Press, Oxford.
Sayuti, K., & Yenrina, R. 2015. Antioksidan Alami dan Sintetik. Andalas University Press. Padang.
Sharma S, Richa, Harsimran. 2017. Phytochemical and anatomical screening of Ecliptca prostrata L. an important medical herb from Chandigarh. J Med Pl Stud 5 : 255-258.
Tung, N. Huu, Y. Ding, E. M. Choi, P. V. Kiem, C. V. Minh, and Y. H. Kim. 2009. New anthracene glycosides from Rhodomyrtus tomentosa stimulate osteoblastic differentiation of MC3T3-E1 cells. Archives of Pharmacal Research 32 :515–20.
Wink, M. 2010. Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism, Second Edition. Blackwell Publishing Ltd. United Kingdom:
Wu, Pingping, G. Ma, N. Li, Q. Deng, Y. Yin, and R. Huang. 2015. Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of Rhodomyrtus Tomentosa(Ait.) Hassk. Food Chemistry 173:194–202.