Potential habitat suitability of Iraqi amphibians under climate change
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Kaky E. 2020. Potential habitat suitability of Iraqi amphibians under climate change. Biodiversitas 21: 731-742. Biodiversity management and conservation planning are two techniques for reducing the rate of biodiversity loss, especially under the effect of climate change. Here 289 records of five species of amphibians from Iraq and seven environmental variables were used with MaxEnt to predict potential habitat suitability for each species under current and future conditions, using the 5th IPCC assessment (RCP 2.6 and RCP 8.5 for the year 2050). The models suggest that annual precipitation and the mean temperature of the wettest quarter are the main factors that shape the distributions of these species. The estimated current habitat suitability was closely similar to that for 2050 under both scenarios, with a high niche overlap between them for all species. Among species, there were low niche overlaps between the frogs Bufo viridis, Hyla savignyi and Rana ridibunda, and also between the salamanders Neurergus crocatus and Neurergus microspilotus. Future sampling should focus on areas not currently covered by records to reduce bias. The results are a vital first step in long-term conservation planning for these species. Via sharing these results with decision-makers and stakeholders a crucial conservation actions need to increase Iraqi Protected Areas to avoid losing biodiversity in Iraq especially the unique populations and threaten species.
##plugins.themes.bootstrap3.article.details##
Al-Barazengy, A. N., Salman, A. O. & Hameed, F. T. A. 2015. Updated list of amphibians and reptiles in iraq 2014. Bull. Iraq nat. Hist. Mus., 13, 29-40.
Allouche, O., Tsoar, A. & Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
Anderson, R. P. & Gonzalez, I. 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222, 2796-2811.
Araújo M. B., Rahbek, C., 2006. How does climate change affect biodiversity?. Science, 313:1396–1397.
Austin, M., 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling. 200, 1e19.
Aziz Avci, Boris Tuniyev, Jelka Crnobrnja Isailovic, Petros Lymberakis, Claes Andrén, Dan Cogalniceanu, John Wilkinson, Natalia Ananjeva, Nazan Üzüm, Nikolai Orlov, Richard Podloucky, Sako Tuniyev, U?ur Kaya, Göran Nilson, Mozafar Sharifi, Theodore Papenfuss & Soheila Shafiei Bafti 2015. Bufotes variabilis. The IUCN Red List of Threatened Species 2015: e.T153571A74506381. http://dx.doi.org/10.2305/IUCN.UK.2015-1.RLTS.T153571A74506381.en. Downloaded on 13 October 2019.
Baldwin, R. A. 2009. Use of Maximum Entropy Modeling in Wildlife Research. Entropy, 11, 854-866.
Beauregard, F., de Blois, S., 2014. Beyond a climate-centric view of plant distribution: edaphic variables add value to distribution models. PLoS One, 9, e92642.
Bean, W. T., Stafford, R., Butterfield, H. S., & Brashares, J. S., 2014. A multi?scale distribution model for non?equilibrium populations suggests resource limitation in an endangered rodent. PLoS One, 9, e106638.
Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. 2014. Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecological Informatics, 19, 10-15.
Broennimann, O., Thuiller, W., Hughes, G., Midgley, G. F., Alkemade, J. M. R. & Guisan, A. 2006. Do geographic distribution, niche property and life form explain plants' vulnerability to global change? Global Change Biology, 12, 1079-1093.
Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: the next generation 326Python-based GIS toolkit for landscape genetic, biogeographic and species 327distribution model analyses. PeerJ, 5, e4095. doi:10.7717/peerj.4095
CBD. Decision Adopted by the Conference of the Parties to the Convention of Biological Diversity at its Tenth meeting. Convention on Biological Diversity. 2010: available: http://www.cbd.int/sp/
de Araújo, C. B., Marcondes-Machado, L. O., Costa, G. C. & Silman, M. 2014. The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. Journal of Biogeography, 41, 513-523.
de Luis M., A´lvarez-Jime´nez, J., Mart?´nez Labarga, J. M., Bartolome´ C., 2019. Four climate change scenarios for Gypsophila bermejoi G. Lo´pez(Caryophyllaceae) to address whether bioclimatic and soil suitability will overlap in the future. PLoS One, 14(6): e0218160.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. & Yates, C. J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57.
Elith, J., Graham, C. H., Anderson, R. P., Dud?´k, M. et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129-151.
Elith, J. & Leathwick, J. R. 2009. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697.
Franklin, J., 2009. Mapping species distributions: spatial inference and prediction, 1st edn. Cambridge University Press, New York.
Fois, M., Fenu, G., Cuena Lombraña, A., Cogoni, D., Bacchetta, G., 2015. A practical method to speed up the discovery of unknown populations using Species Distribution Models. Journal for Nature Conservation, 24, 42-48
Fois, M., Cuena-Lombraña, A., Fenu, G., Cogoni, D., Bacchetta, G., 2016. The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. Journal for Nature Conservation, 33, 1–9.
Fois, M., Cuena-Lombraña, A., Fenu, G., Bacchetta, G., 2018. Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecological Modelling, 385, 124–132.
Frost, D. R. 2017. Amphibian species of the world: An online reference. Version 6.0 (1/JUN/2019). Electronic Database accessible at http:// research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.
Gasc J. P., Cabela A., Crnobrnja-Isailovic J., Dolmen D., Grossenbacher K., Haffner P., Lescure J., Martens H., Martínez Rica J. P., Maurin H., Oliveira M. E., Sofianidou T. S., Veith M., Zuiderwijk A. (Eds), 1997. Atlas of amphibians and reptiles in Europe. Societas Europaea Herpetologica, Muséum National d’Histoire Naturelle & Service du Patrimoine Naturel, Paris, 496 pp.
Gillard, M., Thiébaut, G., Deleu, C., Leroy, B., 2017. Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biological Invasions, 19 (7), 2159–2170.
Ibáñez I., Clark J. S., Dietze, M. C., Feeley, K., Hersh M., LaDeau S., McBride A., Welch N. E., Wolosin M.S., 2006. Predicting biodiversity change: outside the climate envelope, beyond the species-area curve. Ecology, 87:1896–1906.
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution ofWorking Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, Pachauri RK, Meyer LA (eds) IPCC, Geneva, Switzerland.
Hampe, A., 2004. Bioclimate envelope models: what they detect and what they hide. Global Ecology and Biogeography, 13:469–471.
Hannah, L. 2011. Climate Change Biology, Elsevier Ltd.
Hatten, J. R., Giermakowski, J. T., Holmes, J. A., Nowak, E. M., Johnson, M. J., Ironside, K. E., III, C. v. R., Peters, M., Truettner, C. & Cole, K. L. 2016. Identifying Bird and Reptile Vulnerabilities to Climate Change in the Southwestern United States: US geological survey open-file report 2016-1085. 76 p.
Hawkins, B. A. et al., 2008. What do range maps and surveys tell us about diversity patterns? – Folia Geobot., 43: 345 – 355.
Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
Hortal ,J., de Bello, F., Diniz-Filho, J. A., F., Lewinsohn, T. M., Lobo, J. M., Ladle, R. J., 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46:523–549.
Jimenez-Valverde, A., Lobo, J.M., Hortal, J., 2008. Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14, 885e890.
in den Bosch, H. 2003. Iraqi herpetology_an introductory checklist. Institute of Biology, Leiden University, The Netherlands.
Kaky E, Gilbert F. 2016. Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. Jornal of Arid Environments, 135:140–146.
Kaky, E. & Gilbert, F. 2017. Predicting the distributions of Egypt's medicinal plants and their potential shifts under future climate change. PLoS One, 12, e0187714.
Kaky E, Gilbert F. 2019a. Allowing for human socioeconomic impacts in the conservation of plants under climate change. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, DOI: 10.1080/11263504.2019.1610109.
Kaky E, Gilbert F. 2019b. Assessment of the extinction risks of medicinal plants in Egypt under climate change by integrating species distribution models and IUCN Red List criteria. Journal of Arid Environments, 179, 1-9 . doi.org/10.1016/j.jaridenv.2019.05.016.
Lawton, J. H., May, R. M., 1995. Extinction Rates. Oxford Univ. Press,Oxford.
Lobo, J.M., Jimenez-Valverde, A., Real, R., 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology of Biogeography, 17, 145e151.
MEA, 2005. Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute, Washington, DC.
Monastersky, R., 2014. Biodiversity: Life–a status report. Nature, 516:158–161.
Morueta-Holme, N., Flojgaard, C. & Svenning, J. C. 2010. Climate change risks and conservation implications for a threatened small-range mammal species. PLoS One, 5, e10360.
Naimi, B. & Araújo, M. B. 2016. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39, 368-375.
Najafi-Majd, E., and Kaya, U., 2013. Rediscovery of the Lake Urmia newt, Neurergus crocatus Cope, 1862 (Caudata: Salamandridae) in northwestern Iran after 150 years. Amphibian and Reptile Conservation, 6: 36-41.
National Report on Biodiversity in Iraq (NRBI), 2010. Iraq fourth national report to the convention on biological diversity. Ministry of Environment, republic of Iraq.
Newbold, T., Reader, T., Zalat, S., El-Gabbas, A. & Gilbert, F. 2009. Effect of characteristics of butterfly species on the accuracy of distribution models in an arid environment. Biodiversity and Conservation, 18, 3629-3641.
Papenfuss, T., Sparreboom, M., Ugurtas, I.H., Rastegar-Pouyani, N., Kuzmin, S., Anderson, S., Eken, G., Kiliç, T., Gem, E. & Kaya, U. 2009. Neurergus crocatus (errata version published in 2016). The IUCN Red List of Threatened Species 2009: e.T14734A86247230. http://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T14734A4458480.en. Downloaded on 13 October 2019.
Pearson, R. G. & Dawson, T. P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology & Biogeography, 12, 361-371.
Peterson A. T., Pape?, M., Soberón, J., 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213(1):63–72
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez? Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions. Princeton, NJ and Oxford, UK: Princeton University Press.
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. 2017. Opening the black box: an open-source release of Maxent. Ecography, 40, 887-893.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
Phillips, S. J. & Dudik, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A. & Tavoni, M. 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153-168.
Say?m, F., Ba?kale, E., Tarkhnishvili, D., Kaya, U., 2009. Some water chemistry parameters of breeding habitats of the Caucasian salamander, Mertensiella caucasica in the Western Lesser Caucasus. Comptes Rendus Biologies, 332: 464-469.
Sharifi, M., Shafiei Bafti, S., Papenfuss, T., Anderson, S., Kuzmin, S. & Rastegar-Pouyani, N. 2009. Neurergus microspilotus (errata version published in 2016). The IUCN Red List of Threatened Species 2009: e.T59451A86642381. http://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T59451A11944058.en. Downloaded on 13 October 2019.
Smeraldo, S., Di Febbraro, M., Bosso, L., Flaquer, C., Guixé, D., Lisón, F., Meschede, A., Juste, J., Prüger, J., Puig-Montserrat, X., Russo, D., 2018. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodiversity and Conservation, 27, 2425–2441.
Slater, H. & Michael, E. 2012. Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PLoS One, 7, e32202.
Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the U S A, 102, 8245-50.
UNEP-WCMC, 2019. Protected Area Profile for Iraq from the World Database of Protected Areas, September 2019. Available at: www.protectedplanet.net
van Vuuren, D. P., Edmonds, J. A., Kainuma, M., Riahi, K. & Weyant, J. 2011. A special issue on the RCPs. Climatic Change, 109, 1-4.
Vasconcelos, T. S. & Nascimento, B. T. M. 2014. The utility of open-access biodiversity information in representing anurans in the Brazilian Atlantic Forest and Cerrado. Phyllomedusa: Journal of Herpetology, 13, 51.
Vasconcelos, T. S., Rodríguez, M. Á. & Hawkins, B. A. 2012. Species distribution modelling as a macroecological tool: a case study using New World amphibians. Ecography, 35, 539-548.
Wayne, G. 2013. The beginners’s guide to representative concentration pathways. Skeptical Science.
Warren, D. L. & Seifert, S. N. 2011. Warren_Ecological niche modeling in Maxent- the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 335–342.
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62, 2868–2883.
Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. E. M., Willis, K. J., 2005. Conservation biogeography: assessment and prospect. Diversity and Distribntion, 11:3–23
Wiens, J. J., 2011. The causes of species richness patterns across space, time, and clades and the role of ‘ecological limits’. Quarterly Review Of Biology, 86: 75–96.
Widick, I., V., Bean, W., T., (2019). Evaluating current and future range limits of an endangered, keystone rodent (Dipodomys ingens). Divers Distrib., 00: 1–14.
Williams, D. F., 1992. Geographic distribution and population status of the giant kangaroo rat, Dipodomys ingens (Rodentia, Heteromyidae). In Endangered and sensitive species of the San Joaquin Valley, California: Their biology, management, and conservation. Bakersfield, CA: California Energy Commission, California State University Bakersfield.
Wisz, M. S., Pottier J, Kissling W. D., Pellissier L., Lenoir J., Damgaard C. F., Dormann C. F., Forchhammer M. C., Grytnes J., Guisan A., Heikkinen R. K., Høye T. T., Kühn I., Luoto M., Maiorano L., Nilsson M. C., Normand S., Öckinger E., Schmidt N. M. , Termansen M., Timmermann A., Wardle D. A., Aastrup P., Svenning J. C., 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modeling. Biological Reviews, 88:15–30.