Effect of mare’s milk prebiotic supplementation on the gut microbiome and the immune system following antibiotic therapy

##plugins.themes.bootstrap3.article.main##

MADIYAR NURGAZIYEV
YERMEK AITENOV
ZHANAGUL KHASSENBEKOVA
SANIYA AKPANOVA
KAIRAT RYSBEKOV
SAMAT KOZHAKHMETOV
AYAULYM NURGOZHINA
SHYNGGYS SERGAZY
LAURA CHULENBAYEVA
ZHANNA OSPANOVA
ALTYNAI TUYAKOVA
NURISLAM MUKHAMBETGANOV
RASHIDA SATTYBAYEVA
SALTANAT URAZOVA
NAZYM GALYMGOZHINA
ANARA ZHUMADILOVA
ALEXANDR GULYAEV
ALMAGUL KUSHUGULOVA

Abstract

Abstract. Nurgaziyev M, Atenov Y, Khassenbekova Z, Akpanova S, Rysbekov K, Kozhakhmetov S, Nurgozhina A, Sergazy S, Chulenbayeva L, Ospanova Z, Tuyakova A, Mukhambetganov N, Sattybayeva R, Urazova S, Galymgozhina N, Zhumadilova A, Gulyaev A, Kushugulova A. 2020. Effect of mare’s milk prebiotic supplementation on the gut microbiome and the immune system following antibiotic therapy. Biodiversitas 21: 5065-5071. Antibiotic treatment can severely affect the gut microbiome for short-term and long-term consequences. Probiotic and prebiotic supplements are widely prescribed to modulate the composition and function of the human gut microbiome. The current study aims to determine the impacts of mare’s milk prebiotics on the diversity of gut bacterial communities and the local immune system when administered during and after a course of antibiotic therapy. Six children aged 4 to 5 years diagnosed with bilateral bronchopneumonia were prescribed cephalosporin (cefuroxime) antibiotics. During the 60 days of the study, three children consumed mare’s milk prebiotics, while the other three did not. Fecal samples were collected daily during antibiotic therapy and every five days after the last day of antibiotic treatment. Total DNA was isolated, and the taxonomic composition of the gut microbiome was analyzed by sequencing the 16S rRNA gene (V1-V3 region). The MULTIPLEX MAP platform was used to evaluate the local immune status. The relative abundance of 11 genera was reduced and did not recover until the last day of the study. The abundance of Bacteroides was not significantly altered in either group. Christensenella, Rothia, Abiotrophia, Acinetobacter, Anaerotruncus, Holdemania, and Turicibacter numbers were significantly increased on day five and remained at the same level during the study period. Cephalosporin administration also reduced the levels of pro-inflammatory and anti-inflammatory cytokines/chemokines (MIP1?, TNF?, GMCSF, GCSF, sCD40L, FGF2, TGF?, IL1?, and IP10).

##plugins.themes.bootstrap3.article.details##

References
Afra, K., Laupland, K., Leal, J., Lloyd, T., & Gregson, D. (2013). Incidence, risk factors, and outcomes of Fusobacterium species bacteremia. BMC Infectious Diseases, 13(1), 1. https://doi.org/10.1186/1471-2334-13-264
Burdet, C., Grall, N., Linard, M., Bridier-Nahmias, A., Benhayoun, M., Bourabha, K., Magnan, M., Clermont, O., d’Humières, C., Tenaillon, O., Denamur, E., Massias, L., Tubiana, S., Alavoine, L., Andremont, A., Mentré, F., & Duval, X. (2019). Ceftriaxone and cefotaxime have similar effects on the intestinal microbiota in human volunteers treated by standard-dose regimens. Antimicrobial Agents and Chemotherapy, 63(6), 1–12. https://doi.org/10.1128/AAC.02244-18
Ding, Y. H., Qian, L. Y., Pang, J., Lin, J. Y., Xu, Q., Wang, L. H., Huang, D. S., & Zou, H. (2017). The regulation of immune cells by Lactobacilli: A potential therapeutic target for anti-atherosclerosis therapy. Oncotarget, 8(35), 59915–59928. https://doi.org/10.18632/oncotarget.18346
Grazul, H., Kanda, L. L., & Gondek, D. (2016). Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes, 7(2), 101–114. https://doi.org/10.1080/19490976.2016.1138197
Guri, A., Paligot, M., Crèvecoeur, S., Piedboeuf, B., Claes, J., Daube, G., Corredig, M., Griffiths, M. W., & Delcenserie, V. (2015). In vitro screening of mare’s milk antimicrobial effect and antiproliverative activity. FEMS Microbiology Letters, 363(2), 1–7. https://doi.org/10.1093/femsle/fnv234
Han Yiping. (2015). Fusobacterium nucleatum: a commensal truned pathogen. Current Opinion in Microbiology, 1(23), 141–147. https://doi.org/10.1080/10810730902873927.Testing
Hendrickx, A. P. A., Top, J., Bayjanov, J. R., Kemperman, H., Rogers, M. R. C., Paganelli, F. L., Bonten, M. J. M., & Willems, R. J. L. (2015). Antibiotic-driven dysbiosis mediates intraluminal agglutination and alternative segregation of enterococcus faecium from the intestinal epithelium. MBio, 6(6), 1–11. https://doi.org/10.1128/mBio.01346-15
Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756
Jernberg, C., Löfmark, S., Edlund, C., & Jansson, J. K. (2007). Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME Journal, 1(1), 56–66. https://doi.org/10.1038/ismej.2007.3
Jernberg, C., Löfmark, S., Edlund, C., & Jansson, J. K. (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology, 156(11), 3216–3223. https://doi.org/10.1099/mic.0.040618-0
Kozhakhmetov, S., Babenko, D., Nurgaziyev, M., Tuyakova, A., Nurgozhina, A., Muhanbetganov, N., Chulenbayeva, L., Sergazy, S., Gulyayev, A., Saliev, T., & Kushugulova, A. (2020). The combination of mare’s milk and grape polyphenol extract for treatment of dysbiosis induced by dextran sulfate sodium. Biodiversitas, 21(5), 2275–2280. https://doi.org/10.13057/biodiv/d210558
Kusharyati, D. F., Pramono, H., Ryandini, D., & Manshur, T. A. B. U. (2020). Bifidobacterium from infant stool?: the diversity and potential screening. Biodiversitas, 21(6), 2506–2513. https://doi.org/10.13057/biodiv/d210623
Kushugulova, A., Kozhakhmetov, S., Sattybayeva, R., Nurgozhina, A., Ziyat, A., Yadav, H., & Marotta, F. (2018). Mare’s milk as a prospective functional product. Functional Foods in Health and Disease, 8(11), 548. https://doi.org/10.31989/ffhd.v8i11.528
Langer, M. (2011). Master thesis presented by.
Malone, L., Cm, M. B. A., Grigorenko, E., & Stalons, D. (2017). Id Week 2015. 2(September), 2633851. https://doi.org/10.1093/o
Maraki, S., & Papadakis, I. S. (2015). Rothia mucilaginosa pneumonia: A literature review. Infectious Diseases, 47(3), 125–129. https://doi.org/10.3109/00365548.2014.980843
Markowiak, P., & ?lizewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9). https://doi.org/10.3390/nu9091021
McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217
Pandey, K. R., Naik, S. R., & Vakil, B. V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1
Rahmati, E., Martin, V., Wong, D., Sattler, F., Petterson, J., Ward, P., Butler-Wu, S. M., & She, R. C. (2017). Facklamia species as an under-recognized pathogen . Open Forum Infectious Diseases, ofw272. https://doi.org/10.1093/ofid/ofw272
Rashid, M. U., Rosenborg, S., Panagiotidis, G., Söderberg-Löfdal, K., Weintraub, A., & Nord, C. E. (2015). Ecological effect of ceftaroline-avibactam on the normal human intestinal microbiota. Antimicrobial Agents and Chemotherapy, 59(8), 4504–4509. https://doi.org/10.1128/AAC.00530-15
Scott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J., & Duncan, S. H. (2013). The influence of diet on the gut microbiota. Pharmacological Research, 69(1), 52–60. https://doi.org/10.1016/j.phrs.2012.10.020
Shi, N., Li, N., Duan, X., & Niu, H. (2017). Interaction between the gut microbiome and mucosal immune system. Military Medical Research, 4(1), 1–7. https://doi.org/10.1186/s40779-017-0122-9
Singh, R. K., Chang, H. W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H., Bhutani, T., & Liao, W. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15(1), 1–17. https://doi.org/10.1186/s12967-017-1175-y
Tauzin, M., Ouldali, N., Béchet, S., Caeymaex, L., & Cohen, R. (2019). Pharmacokinetic and pharmacodynamic considerations of cephalosporin use in children. Expert Opinion on Drug Metabolism and Toxicology, 15(11), 869–880. https://doi.org/10.1080/17425255.2019.1678585
Ubeda, C., & Pamer, E. G. (2012). Antibiotics, microbiota, and immune defense. Trends in Immunology, 33(9), 459–466. https://doi.org/10.1016/j.it.2012.05.003

Most read articles by the same author(s)