Quantitative assay of Indole Acetic Acid-producing bacteria isolated from several lakes in East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

SULISTYA IKA RAMADHANI
SITORESMI PRABANINGTYAS
https://orcid.org/0000-0002-9486-7603
AGUNG WITJORO
RINA TRITURANI SAPTAWATI
https://orcid.org/0000-0003-4507-1673
ACHMAD RODIANSYAH
https://orcid.org/0000-0001-5565-1386

Abstract

Abstract. Ramadhani SI, Prabaningtyas S, Witjoro A, Saptawati TR, Rodiansyah A. 2020. Quantitative assay of Indole Acetic Acid-producing bacteria isolated from several lakes in East Java, Indonesia. Biodiversitas 21: 5448-5454. Biofuel is an alternative to fossil fuels that are environmentally friendly with low emissions. Biofuel from biomass microalgae, especially Chlorella vulgaris, has an essential role in biofuel production. Increasing biomass microalgae was done by co-culture between microalgae and bacteria. This research aims to determine the potential of bacterial isolates to produce the IAA hormone and identify the highest isolate with the ability to synthesis IAA from four lakes in East Java. This research was conducted by culturing bacterial isolates in the Tryptic Soy Broth (TSB) to add tryptophan media in various periods of incubation. The absorbance was measured with UV-Vis spectrophotometry at a wavelength of 530 nm for determining IAA-production from bacterial isolates. The results showed that the "12" code bacterial isolate from Ranu Grati produced the highest IAA hormone concentration, with an average of 30.23 ppm. The morphological characterization of the highest IAA-producing bacteria showed that isolate included the Enterobacteriaceae group and phenotypic characterization include Enterobacter cloacae complex (ECC).

##plugins.themes.bootstrap3.article.details##

References
Aryantha, I.N.P., Lestari, D.P. 2004. The Potency of IAA Producing Bacteria Isolates on Promotion The Growth of Mungbean Sprout in Hydroponic Condition.
Asep, A.p., Randy, F.A., Ken, A.P. 2019. Molecular Identification of L-asparaginase-Producing Endophytic Bacteria Isolated from Mangrove Buta-Buta (Excoecaria agallocha). JPB Kelautan dan Perikanan Vol. 14 No. 1 Tahun 2019: 29-3. DOI : http://dx.doi.org/10.15578/jpbkp.v14i1.577
Benson. 2001. Microbiological Application. New York: Mc Graw Hill Publisher.
Bergey, D.H., dan Boone, D.R. 2009. Bergey's Manual of Systematic Bacteriology, Vol.3, Ed. 2, 655, Springer Science-Business Media, New York.
Cappuccino, J.G. and Sherman, N. 2014. Microbiology, A Laboratory Manual. The Tenth Edition. Pearson Education, Inc. United States of America : 75-78.
de-Bashan L.E, Antoun H, Bashan Y. 2016. Involvement of Indole-3-Acetic-Acid
produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Jurnal Phycol 2016;44:938e47.
Gordon, S.A. and Weber, R.P. 1951. Colorimetric Estimation of Indole Acetic Acid . American Society of Plant Biologist. 192-195.
Gravel, V., Antoun, H., Tweddell, R.J. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol Biochemistry. 39, 1968–1977. https://doi.org/10.1016/j.soilbio.2007.02.015.
Jegathese, S.J.P., Farid, M. 2014. Microalgae as a Renewable Source of Energy: A Niche Opportunity. Jurnal Renew Energy, 1–10. https://doi.org/10.1155/2014/430203.
Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., Sodergren, E., & Weinstock, G. M. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-019-13036-1.
Koga J, Adachi T, Hidaka H (1991) IAA biosynthetic pathway from tryptophan via indole-3-pyruvicacid in Enterobacter cloacae. Agric Biol Chem 55:701-706
Kresnawaty, I and Andanawarih, S. 2008. Optimisasi dan pemurnian IAA yang dihasilkan Rhizobium sp. dalam medium serum lateks dengan suplementasi triptofan dari pupuk kandang. Menara perkebunan, 76 (2), 74-82. Institut Pertanian Bogor, Indonesia.
Khairani, G. 2009. Isolasi dan Uji Kemampuan Bakteri Endofit Penghasil Hormon IAA (Indole Acetic Acid) dari Akar Tanaman Jagung (Zea mays L.). Skripsi. Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sumatera Utara. Medan.
Khoi Nghia, N., 2017. Isolation and Characterization of Indole Acetic Acid Producing Halophilic Bacteria from Salt Affected Soil of Rice–Shrimp Farming System in the Mekong Delta, Vietnam. Agric. For. Fish. 6, 69. https://doi.org/10.11648/j.aff.20170603.11
Li Y, Horsman M, Wu N, Lan C. Q, Dubois-Calero N. 2008. Biofuels from Microalgae. Biotechnol Prog. 0(0):0–0. doi:10.1021/bp070371.
Lwin, K.M., Myint, M.M., Tar, T., Aung, W.Z.M. 2012. Isolation of Plant Hormone (Indole-3-Acetic Acid - IAA) Producing Rhizobacteria and Study on Their Effects on Maize Seedling. English Journal. 16, 137–144. https://doi.org/10.4186/ej.2012.16.5.137.
Larasati, E.D., Rukmi, M.G., Kusdiyantini, E., Ginting, R.C. 2018. Isolasi dan Identifikasi Bakteri pelarut Fosfat dari Tanah Gambut. Departemen Biologi. Universitas Diponegoro.
Miranda, A.F., Narasimhan, R., Constandino, A., Thorben, H., Aneela, Y., Simone, R., Donald, W., Paul, M., Felicity, R., German, S, Banwari, L., Sanjukta, S., Aidyn, M. 2017. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol Biofuels 10;120. DOI 10.1186/s13068-017-0798-9
Nhu, V.T.P., Diep, C.N., 2017. Isolation and characterization of endophytic bacteria in soybean (Glycine max L. (Merrill) cultivated on alluvial soil of Can Tho city, Vietnam. IJIET. 8.
Pattern, C.L., B.R. Glick. 2002. Role of Pseudomonas putida Indole Acetic Acid in Developmentof The Plant Root System. Appl Environ Microbiol Researh 160: 127-133.
Palacios, O. A., Lopez, B. R., Bashan, Y., de-Bashan, L. E. 2018. Early Changes in Nutritional Conditions Affect Formation of Synthetic Mutualism Between Chlorella sorokiniana and the Bacterium Azospirillum brasilense. Jurnal Micobioal Ecology. https://doi.org/10.1007/s00248-018-1282-1.
Schutz A, Golbik R, Tittmann K, Svergun DI, Koch MH, Hubner G, Konig S. 2003. Studies On Structure- Function Relationships of Indolepyruvate Decarboxylase from Enterobacter cloacae, an Enzyme Involeved in the Biosynthesis of the Plant Hormone Indole-3-Acetic Acid. Eur J Biochem 270.
Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. Jurnal FEMS Microbiol Rev. 31(4):425–448. doi:10.1111/j.1574-6976.2007.00072.x.
Sinaga, E.L.R., Muhtadi, A., Bakti, D. 2016. Profil Suhu, Oksigen Terlarut, dan pH Secara Vertikal Selama 24 Jam di Danau Kelapa Gading Kabupaten Asahan Sumatera Utara. Omni-Akuatika 12. https://doi.org/10.20884/1.oa.2016.12.2.107.
Shaik, I., Janakiram, P., L., S., Chandra, S., 2016. Isolation and identification of IAA producing endosymbiotic bacteria from Gracillaria corticata (J. Agardh). Jurnal Bioassays. 5, 5179. https://doi.org/10.21746/ijbio.2016.12.0012.
Spaepen, S, Vanderleyden, J. 2011. Auxin and Plant-Microbe Interactions. Cold Spring Harb. Perspect. Biol. 3, a001438–a001438. https://doi.org/10.1101/cshperspect.a001438.
Sukmadi R. B. 2013. Aktivitas Fitohormon Indole-3-Acetic Acid (IAA) dari Bebarapa Isolat Bakteri Rhizosfer dan Endofit. Jurnal Science. 14(3). doi:10.29122/jsti.v14i3.930. [accessed 2020 Apr 9]. http://ejurnal.bppt.go.id/index.php/JSTI/article/view/930.
Susilowati, D.N., Riyanti, E.I., Setyowati, M., Mulya, K., 2018. Indole-3-acetic acid producing bacteria and its application on the growth of rice. Presented at the Inveting Prosperous Future Through Biological Research And Tropical Biodiversity Management: Proceedings of the 5th International Conference on Biological Science, Yogyakarta, Indonesia, p. 020016. https://doi.org/10.1063/1.5050112.
Sivaramakrishnan, R and Incharoensakdi, A. 2020. Plant Hormone Induced Enrichment of Chlorella sp. Omega-3 fatty Acids. Biotechnol Biofuels 13:7. https://doi.org/10.1186/s13068-019-1647-9.
Tandon, P, Jin, Q, and Huang, L. 2017. A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microbial Cell Factories, 16(1), 1–13. https://doi.org/10.1186/s12934-017-0834-2.
Udayan, A., Kathiresan, S. Arumugam, M. 2018. Kinetin and Giberellic Acid (GA3) Act Synergistically to Produce High Value Polyunsaturated Fatty Acids in Nannochloropsis oceanica CASA CC201. Algal Res. 2018;32:182-92.