Assessment of some heavy metals in various aquatic plants of Al-Hawizeh Marsh, southern of Iraq

##plugins.themes.bootstrap3.article.main##

DUNYA A.H. AL-ABBAWY
BASIM M. HUBAIN AL-THAHAIBAWI
ITHAR K.A. AL-MAYALY
KADHIM H. YOUNIS

Abstract

Abstract. Al-Abbawy DAH, Al-Thahaibawi BMH, Al-Mayaly IKA, Younis KH. 2021. Assessment of some heavy metals in various aquatic plants of Al-Hawizeh Marsh, southern of Iraq. Biodiversitas 22: 338-345. In order to describe the degree of contamination of aquatic environments in Iraq, heavy metals analysis (Fe, Ni, Cr, Cd, Pb, and Zn) was conducted for six aquatic macrophytes from different locations of Al-Hawizeh Marsh in southern Iraq. The six species were Azolla filiculoides (floating plant), Ceratophyllum demersum, Potamogeton pectinatus, Najas marina (submerged plants), Phragmites australis, and Typha domingensis (emergent plants). The results indicate that cadmium, chromium, and iron concentrations in aquatic plants were above the World Health Organization (WHO). In contrast, zinc, copper, and lead were within the allowable limits. C. demersum and N. marina showed higher concentrations of heavy metal accumulation than the other aquatic plants. The concentration of heavy metals in plant tissues during the summer months was higher than in the different seasons. C. demersum and N. marina showed higher concentrations of heavy metal accumulation than the other aquatic plants. Heavy metal bioconcentration (BCF) was calculated to assess heavy metals bioaccumulation in the aquatic plants.

##plugins.themes.bootstrap3.article.details##

References
Abbas, S. F. 2006. Application of Hydrodynamic Model in Abu Zirig Marshland [M. Sc. Thesis]. University of Al-Mustansiriya.
Al-Haidarey, M. J. S., Hassan, F. M., Al-Kubaisey, A. R. A., & Douabul, A. a. Z. 7. The Geoaccumulation Index of Some Heavy Metals in Al-Hawizeh Marsh, Iraq. E-Journal of Chemistry; Hindawi. https://doi.org/10.1155/2010/839178
Al-Hilli, M. R. 1977. Studies on the plant ecology of the Ahwar region in southern Iraq. Cairo, University of Cairo [PhD Thesis]. Ph. D.
Al-Homaidan, A. A., Al-Otaibi, T. G., El-Sheikh, M. A., Al-Ghanayem, A. A., & Ameen, F. 2020. Accumulation of heavy metals in a macrophyte Phragmites australis: Implications to phytoremediation in the Arabian Peninsula wadis. Environmental Monitoring and Assessment, 1923, 202. https://doi.org/10.1007/s10661-020-8177-6
Ali, H., Khan, E., & Sajad, M. 2013. Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91. https://doi.org/10.1016/j.chemosphere.2013.01.075
Al-Saad, H. T., & Mustafa, Y. Z. 1994. Pollutants in the sediment of Iraqi marshes: A review. In" Ahwar of Iraq Environmental Approach", Hussain, NA. Marine Science Centre Puplication, 18.
Al-Saad, Hamid T., Al-Hello, M. A., Al-Taein, S. M., & DouAbul, A. A. Z. 2010. Water quality of the Iraqi southern marshes. Mesopotamian Journal of Marine Science, 252, 188–204.
Al-Saadi, H. A., & Al-Mousawi, A. H. 1988. Some notes on the ecology of aquatic plants in the Al-Hammar marsh, Iraq. Vegetatio, 753, 131–133.
Antoine, S. E. 1984. Studies on the bottom sediments of Al-Hammara marsh area in southern Iraq. Limnologica Jena, 161, 25–28.
Bai, L., Liu, X.-L., Hu, J., Li, J., Wang, Z.-L., Han, G., Li, S.-L., & Liu, C.-Q. 2018. Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin. International Journal of Environmental Research and Public Health, 1512. https://doi.org/10.3390/ijerph15122857
Baldantoni, D., Maisto, G., Bartoli, G., & Alfani, A. 2005. Analyses of three native aquatic plant species to assess spatial gradients of lake trace element contamination. Aquatic Botany, 83, 48–60. https://doi.org/10.1016/j.aquabot.2005.05.006
Bareen, F., & Khilji, S. 2008. Bioaccumulation of metals from tannery sludge by Typha angustifolia L. African Journal of Biotechnology, 718.
Bedair, H. M., Al Saad, H. T., & Salman, N. A. 2006. Iraq’s southern marshes something special to be conserved; A Case Study. Marsh Bulletin, 12, 99–126.
Cai, S., Shen, Z., Ni, Z., Li, Y., Liu, B., Dai, Y., & Zhao, J. 2018. Metal distribution in water, sediment, submerged plant, and fish from an urban river in Zunyi, southwest of China. FRESENIUS ENVIRONMENTAL BULLETIN, 273, 1627–1633.
Duman, F., Urey, E., & Koca, F. D. 2015. Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail Typha angustifolia L.. Environmental Science and Pollution Research, 2222, 17886–17896. https://doi.org/10.1007/s11356-015-4979-4
Ebrahimpour, M., & Mushrifah, I. 2008. Heavy metal concentrations Cd, Cu and Pb in five aquatic plant species in Tasik Chini, Malaysia. Environmental Geology, 544, 689–698.
EPA, U. 2001. Update of ambient water quality criteria for cadmium. Agency USEP. Washington, DC: Office of Waste Regulation and Standards, Criteria and Standards Division.
Farhood, A. T. 2016. Water quality status in different aquatic environments in Thi-Qar province based on NSF-WQI. Journal of thi-qar science, 61, 17–24.
Fritioff, A., & Greger, M. 2003. Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. International Journal of Phytoremediation, 53, 211–224.
Geist, J., & Hawkins, S. J. 2016. Habitat recovery and restoration in aquatic ecosystems: Current progress and future challenges. Aquatic Conservation: Marine and Freshwater Ecosystems, 265, 942–962. https://doi.org/10.1002/aqc.2702
Ghorade, I. B., Jadhavar, V. R., & Patil, S. S. 2015. Assessment of heavy metal content in Amba river water Maharashtra. World Journal of Pharmacy and Pharmaceutical Sciences, 45, 1853–1860.
Gobas, F. A., de Wolf, W., Burkhard, L. P., Verbruggen, E., & Plotzke, K. 2009. Revisiting bioaccumulation criteria for POPs and PBT assessments. Integrated Environmental Assessment and Management: An International Journal, 54, 624-637.
Harguinteguy, C. A., Cirelli, A. F., & Pignata, M. L. 2014. Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river Argentina. Microchemical Journal, 114, 111–118.
Jackson, L. J., & Kalff, J. 1993. Patterns in metal content of submerged aquatic macrophytes: The role of plant growth form. Freshwater Biology, 293, 351–359.
Kakulu, S. E., & Jacob, J. O. 2006. Comparison of digestion methods for trace metal determination in moss samples. Proceeding of the 1st National Conference of the Faculty of Science, University of Abuja, 77–81.
Kar, R. N., Sahoo, B. N., & Sukla, L. B. 1992. Removal of heavy metals from mine water using sulphate-reducing bacteria. Pollut Res, 11, 13–18.
Karthick, P., Siva Sankar, R., Kaviarasan, T., & Mohanraju, R. 2012. Ecological implications of trace metals in seaweeds: Bio-indication potential for metal contamination in Wandoor, South Andaman Island. The Egyptian Journal of Aquatic Research, 384, 227–231. https://doi.org/10.1016/j.ejar.2013.01.006
Liu, J., Cao, L., & Dou, S. 2017. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Marine Pollution Bulletin, 1171–2, 98–110.
Lone, M. I., He, Z., Stoffella, P. J., & Yang, X. 2008. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal of Zhejiang University Science B, 93, 210–220.
Madejon, P., Maranon, T., Murillo, J. M., & Robinson, B. 2004. White poplar Populus alba as a biomonitor of trace elements in contaminated riparian forests. Environmental Pollution, 1321, 145–155.
Mishra, V. K., Upadhyaya, A. R., Pandey, S. K., & Tripathi, B. D. 2008. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresource Technology, 995, 930–936.
Muhsin, I. J. 2011. Al-hawizeh marsh monitoring method using remotely sensed images. Iraqi Journal of Science, 7.
Mustafa, Y. Z., Al-Saad, H. T., & Al-Timari, A. A. 1995. Seasonal variations of trace elements in aquatic vascular plants from Al-Hammar marsh, Iraq. Marina Mesopotamica, 102, 321–329.
Najeeb, U., Ahmad, W., Zia, M. H., Zaffar, M., & Zhou, W. 2017. Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arabian Journal of Chemistry, 10, S3310–S3317.
Nazir, R., Khan, M., Masab, M., Rehman, H. U., Rauf, N. U., Shahab, S., Ameer, N., Sajed, M., Ullah, M., & Rafeeq, M. 2015. Accumulation of heavy metals Ni, Cu, Cd, Cr, Pb, Zn, Fe in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. Journal of Pharmaceutical Sciences and Research, 73, 89.
Newete, S. W., Erasmus, B. F., Weiersbye, I. M., & Byrne, M. J. 2016. Sequestration of precious and pollutant metals in biomass of cultured water hyacinth Eichhornia crassipes. Environmental Science and Pollution Research, 2320, 20805–20818.
Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H., & Yousefi, N. 2009. Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences, 592, 315–323.
Orson, R. A., Simpson, R. L., & Good, R. E. 1992. A mechanism for the accumulation and retention of heavy metals in tidal freshwater marshes of the upper Delaware River estuary. Estuarine, Coastal and Shelf Science, 342, 171–186.
Parkerton, T. F., Arnot, J. A., Weisbrod, A. V., Russom, C., Hoke, R. A., Woodburn, K., Traas, T., Bonnell, M., Burkhard, L. P., & Lampi, M. A. 2008. Guidance for evaluating in vivo fish bioaccumulation data. Integrated Environmental Assessment and Management, 42, 139–155. https://doi.org/10.1897/IEAM_2007-057.1
Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. 2009. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. The International Journal of Biochemistry & Cell Biology, 418–9, 1665–1677.
Rai, U. N., & Sinha, S. 2001. Distribution of metals in aquatic edible plants: Trapa natans Roxb. Makino and Ipomoea aquatica Forsk. Environmental Monitoring and Assessment, 703, 241–252.
Romero-Oliva, C. S., Contardo-Jara, V., & Pflugmacher, S. 2015. Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata. Toxicon, 105, 62–73.
Salman, J. M. 2006. Environmental study of potential pollution in the Euphrates River between Hindiya dam and Kufa region-Iraq [PhD Thesis]. PhD thesis, Faculty of Science, University of Babylon.
Wu, M., Lu, T.-J., Ling, F.-Y., Sun, J., & Du, H.-Y. 2010. Research on the architecture of Internet of Things. 2010 3rd International Conference on Advanced Computer Theory and Engineering ICACTE, 5, V5–484.
Xing, W., Wu, H., Hao, B., Huang, W., & Liu, G. 2013. Bioaccumulation of heavy metals by submerged macrophytes: Looking for hyperaccumulators in eutrophic lakes. Environmental Science & Technology, 479, 4695–4703.
Zoller, W. H. 1984. Anthropogenic Perturbation of Metal Fluxes into the Atmosphere. In J. O. Nriagu Ed., Changing Metal Cycles and Human Health pp. 27–41. Springer. https://doi.org/10.1007/978-3-642-69314-4_3