Identification of marine sponges-symbiotic bacteria and their application in degrading polycyclic aromatic hydrocarbons

##plugins.themes.bootstrap3.article.main##

ISMAIL MARZUKI
MUDYAWATI KAMARUDDIN
RASHEED AHMAD

Abstract

Abstract. Marzuki I, Kamaruddin M, Ahmad R. 2021. Identification of marine sponges-symbiotic bacteria and their application in degrading polycyclic aromatic hydrocarbons. Biodiversitas 22: 1481-1488. Diverse and abundant microbial species that occupy marine sponges may make important contributions to host metabolism. Sponges are filter feeders and devour microorganisms from the seawater around them. Each microbe that endures the sponges’ digestive and immune responses are related symbiotically. Marine sponges symbiont bacteria can comprise as much as 40% of sponge tissue volume, and these are known to exhibit a great potential on polycyclic aromatic hydrocarbons (PAHs) degradation. However, the potential use of marine sponges symbiont bacteria is unexplored. Therefore, we designed and conducted a study to identify bacterial isolates obtained from sponges. For this, we collected sponges samples (Hyrtios erectus, Clathria (Thalysias) reinwardti), Niphates sp., and Callyspongia sp.) from the Spermonde islands in Indonesia. We successfully found eight bacterial isolates from four sponges, as molecular identification based on 16S rRNA approach revealed bacterial isolates of SpAB1, SpAB2, SpBB1, SpDB1, and SpDB2 from three sponges (Hyrtios erectus, Clathria (Thalysias) reinwardti), Niphates sp.). Interestingly, these were closely related to Pseudomonas, and a bacterial isolate from Callyspongia sp. (SpCB1) showed similarity to Bacillus. Bacillus and Pseudomonas bacteria isolated from hydrocarbon-contaminated sponges exhibited degradation of naphthalene and pyrene PAHs.

##plugins.themes.bootstrap3.article.details##

References
Adkins, J. F., Griffin, S., Kashgarian, M., Cheng, H., Lawrence, E. A. B. R., & Shen, E. C. (2002). Radiocarbon dating of deep-sea corals. Radiocarbon, 44(2), 567–580.
Akinde, S. B., & Iwuozor, C. C. (2012). Alkane Degradative Potentials of Bacteria Isolated From the Deep Atlantic Ocean of the Gulf of Guinea. Journal of Bioremediation and Biodegradation, 03(01), 1–6. https://doi.org/10.4172/2155-6199.1000135
Bendouz, M., Dionne, J., Tran, L. H., Coudert, L., Mercier, G., & Blais, J. F. (2017). Polycyclic Aromatic Hydrocarbon Oxidation from Concentrates Issued from an Attrition Process of Polluted Soil Using the Fenton Reagent and Permanganate. Water, Air, and Soil Pollution, 228(3), 114–127. https://doi.org/10.1007/s11270-017-3292-x
Bibi, F., Faheem, M., Azhar, E. I., Yasir, M., Alvi, S. A., Kamal, M. A., … Naseer, M. I. (2016). Bacteria From Marine Sponges: a Source of New Drugs. Current Drug Metabolism, 18(May), 11–15. https://doi.org/10.2174/13892002176661610130906
Cajthaml, T., Erbanova, P., Kollmann, A., Novotny, C., Sasek, V., Cajthaml, T., … Sasek, V. (2008). Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol, 53(4), 289–294.
Ismet, M. S., Soedharma, D., & Effendi, H. (2011). MORPHOLOGY AND CELL BIOMASS OF SPONGE Aaptos aaptos AND. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 3(2). https://doi.org/10.28930/jitkt.v3i2.7829
Kamaruddin, M., Tokoro, M., Moshiur Rahman, M., Arayama, S., Hidayati, A. P. N., Syafruddin, D., … Kawahara, E. (2014). Molecular characterization of various trichomonad species isolated from humans and related mammals in Indonesia. Korean Journal of Parasitology, 52(5), 471–478. https://doi.org/10.3347/kjp.2014.52.5.471
Kamaruddin, Mudyawati, Triananinsi, N., Sampara, N., Sumarni-, Minarti-, & RA, A. M. (2020). Karakterisasi DNA Mikrobiota Usus Bayi pada Persalinan Normal yang diberi ASI dan Susu Formula. Media Kesehatan Masyarakat, 16(1), 116–126. https://doi.org/http://dx.doi.org/10.30597/mkmi.v16i1.9050
Khabouchi, I., Khadhar, S., Driouich Chaouachi, R., Chekirbene, A., Asia, L., & Doumenq, P. (2020). Study of organic pollution in superficial sediments of Meliane river catchment area: aliphatic and polycyclic aromatic hydrocarbons. Environmental Monitoring and Assessment, 192(5). https://doi.org/10.1007/s10661-020-8213-6
Kurniawan, A. (2012). The Isolation And Identification Of Petrofilic Bacteria From Total Petroleum Hydrocarbons (Tph) Residues Under 1% (W/W) Of Bioremediation Process Results. In Seminar Nasional 2012 - Waste Managemen I (pp. 211–216).
Lafi, F. F., Fuerst, J. A., Fieseler, L., Engels, C., Goh, W. W. L., & Hentschel, U. (2009). Widespread distribution of poribacteria in demospongiae. Applied and Environmental Microbiology, 75(17), 5695–5699. https://doi.org/10.1128/AEM.00035-09
Lee, Y. K., Lee, J. H., & Lee, H. K. (2001). Microbial Symbiosis in Marine Sponges. Journal of Microbiology, 39(4), 254–264.
Lloyd, K. G., Albert, D. B., Biddle, J. F., Chanton, J. P., Pizarro, O., & Teske, A. (2010). Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS ONE, 5(1). https://doi.org/10.1371/journal.pone.0008738
Lu, C., Hong, Y., Liu, J., Gao, Y., Ma, Z., Yang, B., … Waigi, M. G. (2019). A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation ?. Environmental Pollution, 251(Mei), 773–782. https://doi.org/10.1016/j.envpol.2019.05.044
Marzuki, I., Chaerul, M., Erniati, Asmeati, & Paserangi, I. (2020a). Biodegradation of aliphatic waste components of oil sludge used micro symbiont of Sponge Niphates sp. IOP Conference Series: Earth and Environmental Science, 429(1). https://doi.org/10.1088/1755-1315/429/1/012056
Marzuki, I, Daris, L., Nisaa, K., & Emelda, A. (2020b). The power of biodegradation and bio-adsorption of bacteria symbiont sponges sea on waste contaminated of polycyclic aromatic hydrocarbons and heavy metals. IOP Conference Series: Earth and Environmental Science, 584, 012013. https://doi.org/10.1088/1755-1315/584/1/012013
Marzuki, Ismail. (2018). Eksplorasi Spons Indonesia: Sekitar Kepulauan Spermonde. (Alfian Noor, R. S. Alwi, & Erniati, Eds.) (1st ed.). Makassar: Nas Media Pustaka. https://doi.org/10.17605/OSF.IO/VP369
Marzuki, Ismail, Noor, A., Nafie, N. La, & Djide, M. N. (2015a). Sponge Role In Alleviating Oil Pollution Through Sludge Reduction , A Preliminary Approach. International Journal of Applied Chemistry, 11(4), 427–441.
Marzuki1, I., Noor, A., Nafie, N. La, & Djide, M. N. (2015b). The Potential Biodegradation Hydrocarbons Of Petroleum Sludge Waste By Cell Biomass Sponge Callysppongia sp. Marina Chimica Acta, 16(2), 11–20.
Marzuki1, I., Noor, A., Nafie, N. La, & Djide, M. N. (2016). Microsymbiont and Morphological Phenotype Analysis Marine Sponge. Marina Chimica Acta, 17(1), 1–8. https://doi.org/10.17605/OSF.IO/P73EN
Medi?, A., Lješevi?, M., Inui, H., Beškoski, V., Koji?, I., Stojanovi?, K., & Karadži?, I. (2020). Efficient biodegradation of petroleum: N -alkanes and polycyclic aromatic hydrocarbons by polyextremophilic Pseudomonas aeruginosa san ai with multidegradative capacity. RSC Advances, 10(24), 14060–14070. https://doi.org/10.1039/c9ra10371f
Melawaty, L., Noor, A., Harlim, T., & de Voogd, N. (2014). Essential metal Zn in sponge Callyspongia aerizusa from Spermonde Archipelago. Advances in Biological Chemistry, 04(01), 86–90. https://doi.org/10.4236/abc.2014.41012
Minarti, Triananinsi, N., Sampara, N., Sumarni, & Kamaruddin, M. (2020). Metagenomic Diversity of Gut Microbiota of Gestational Diabetes Mellitus of Pregnant Women. Jurnal Biomedika, 13(01), 1–8. https://doi.org/https://doi.org/10.31001/biomedika.v13i1.747
Moitinho-Silva, L., Nielsen, S., Amir, A., Gonzalez, A., Ackermann, G. L., Cerrano, C., … Thomas, T. (2017). The sponge microbiome project. GigaScience, 6(10), 1–7. https://doi.org/10.1093/gigascience/gix077
Montalvo, N. F., & Hill, R. T. (2011). Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Applied and Environmental Microbiology, 77(20), 7207–7216. https://doi.org/10.1128/AEM.05285-11
Nguyen, M. T. H. D., & Thomas, T. (2018). Diversity, host-specificity and stability of sponge-associated fungal communities of co-occurring sponges. PeerJ, 2018(6), 1–26. https://doi.org/10.7717/peerj.4965
Nursid, M., Marasskuranto, E., Atmojo, K. B., Hartono, M. P., Nur Meinita, M. D., & R, R. (2017). Investigation on Antioxidant Compounds from Marine Algae Extracts Collected from Binuangeun Coast, Banten, Indonesia. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 11(2), 59. https://doi.org/10.15578/squalen.v11i2.243
Pawar, P. R., & Al-Tawaha, A. R. M. S. (2017). Marine sponges as Bioindicator species of Environmental Stress at Uran ( Navi Mumbai ), west coast of India. American-Eurasian Journal Of Sustainable Agriculture, 11(3), 29–37.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197
Taylor, M. W., Radax, R., Steger, D., & Wagner, M. (2007). Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiology and Molecular Biology Reviews, 71(2), 295–347. https://doi.org/10.1128/mmbr.00040-06
Wang, W., Wang, L., & Shao, Z. (2018). Polycyclic Aromatic Hydrocarbon (PAH) Degradation Pathways of the Obligate Marine PAH Degrader Cycloclasticus sp. Strain P1, 84(21), 1261–18. https://doi.org/10.1128/AEM.01261-18

Most read articles by the same author(s)