Profile of cryptobrachytone C accumulation in Cryptocarya pulchrinervia leaves using MALDI-MSI

##plugins.themes.bootstrap3.article.main##

JUJUN RATNASARI
RIZKITA RACHMI ESYANTI
MARSELINA IRASONIA TAN
LIA DEWI JULIAWATY
SHUICHI SHIMMA

Abstract

Abstract. Ratnasari J, Esyanti RR, Tan MI, Juliawaty LD, Shimma S. 2021. Profile of cryptobrachytone C accumulation in Cryptocarya pulchrinervia leaves using MALDI-MSI. Biodiversitas 22: 1172-1178. Cryptobrachytone C is an active compound isolated from leaves of Cryptocarya pulchrinervia, an indigenous plant from Indonesia. Cryptobrachytone C is cytotoxic against P388 leukemia cancer cell lines. A profile of cryptobrachytone C accumulation in leaves based on physiological age is necessary to study cryptobrachytone C production in the plant since it has anticancer potential. In situ profiling of cryptobrachytone C accumulation in leaves was carried out by imaging techniques using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The cryptobrachytone C ionization efficiency was carried out by derivatization using Girard-T reagent and coating with ?-cyano-4-hydroxycinnamic acid (?-CHCA) matrix. Scanned leaves show higher accumulation intensity in the second leaf. Quantitative accumulation profiling was conducted using GC-MS, where the highest amount of cryptobrachytone C was on the second leaf at 87.07 ± 47.21 mg. This showed that the most effective isolation of cryptobrachytone C would be obtained from young leaves of Cryptocarya pulchrinervia. This profile would play a role in cryptobrachytone C production in-situ or ex-situ using tissue culture.  

##plugins.themes.bootstrap3.article.details##

References
Amin, A., Muhtasib, H.G., Ocker, M., and Stock, R.S. 2009. Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci. 5(1): 1–11.
Boughton, B. A., Thinagaran, D., Sarabia, D., Bacic, A., & Roessner, U. 2016. Mass spectrometry imaging for plant biology: a review. Phytochemistry Reviews, 15(3), 445-488.
Chang, H.S., Tang, J.Y., Yen, C.Y., Huang, H.W., Wu, C.Y., Chung, Y.A., Wang, H.R., Chen, I.S., Huang, M.Y., and Chang, H.W. (2016). Antiproliferation of Cryptocarya concinna derived cryptocaryone against oral cancer cell involving apoptosis, oxidative stress, and DNA Damage, BMC Complementary and Alternative Medicine, 16, 94
Cragg, GM., and Newman, D.J. (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology, 100, 72-79.
Dong, Y.,Li.,B., Malitzky. S., Rogachev, I., Aharoni, A.,Kaftan, F.,Svatos, A.,Franceschi, P. 2016. Sample preparation for massspectrometry imaging of plant tissues: a review,Frontiers in Plant Science , Vol.7.
Fan, Y.,Liu, Y.,You, Y.X., Rao, L., Su, Y., He Q., Hu, F., Li, Y., Wei, W., Xu, Y.K., Lin, B., Zhang, C.R.2019. Cytotoxic arylalkenyl ?,?-unsaturated ?-lactones from Cryptocarya brachythyrsa, Fitoterapia, 136, 104167.
Gechev, T. S., Hille, J., Woerdenbag, H. J., Benina, M., Mehterov, N., Toneva, V., ... & Mueller-Roeber, B. 2014. Natural products from resurrection plants: Potential for medical applications. Biotechnology Advances. 32(6). 1091-1101.
Giocondo, M.P., Bassi, C.L., Telascrea, M., Cavalheiro, A.J., Bolzani, V.S., Silva, D.H.S., Agustoni, D., Mello, E.R., and Soares, C.P. (2009). Kriptomoskatone d2 from Cryptocarya mandioccana: cytotoxicity against human cervical carcinoma cell line, Revista de Ciencias Farmaceuticas Basica e Aplicada, 30(3), 315-322.
Juliawaty, L.D., Aimi, N., Ghisalberti, E. L., Katajima, M., Makmur, L., Syah, Y.M., Siallagan, J., Tahayaka, K., Achmad, S.A., Hakim, E.H. 2006. Chemistry of Indonesian cryptocarya plants (Lauraceae). Chemistry of Natural products: Recent Trends & Developments. 339-423.
Juliawaty, L. D., Ra’idah, P. N., Abdurrahman, S., Hermawati, E., Alni, A., Tan, M. I., ... & Syah, Y. M. 2020. 5, 6-Dihydro-?-pyrones from the leaves of Cryptocarya pulchinervia (Lauraceae). Journal of Natural Medicines. 1-7.
Kaur, R., Kapoor, K., Kaur, H.2011. Plants as a source of anticancer agents. J. Nat. Prod. Plant Resour. 1 (1): 119-124.
Kostermans, A. J. G. H.1957. R e i n w a r d t i a. Herbarium -Bogoriense. Kebun Raya Indonesia. 4 (2): 193 – 256.
Mohapatra, D.K., Reddy, D.S., Ramaiah, M. J., Ghosh, S., Pothula, V., Lunavath, S., Thomas, S., Valli,S. N. C. V. L. P., Pal Bhadra, M.,? and Yadav, J.S.2014. Rugulactone derivatives act as inhibitors of NF-kB activation and modulates the transcription of NF-kB dependent genes in MDA-MB-231 cells. Bioorganic & Medicinal Chemistry Letters. 24: 1389–1396.
Muller, T., Oradu, S., Ifa, D.R.,Cooks, R.G.2011. Direct Plant Tissue Analysis and Imprint Imaging by Desorption Electrospray Ionization Mass Spectrometry. American Chemical Society. 83: 5754–5761.
Puzanskiya, R. K., Yemelyanova, V. V., Shavardaa, A. L c, Gavrilenkoa, T. A., Shishovaa, M. F.2018): Age and Organ-Specific Differences of Potato (Solanum phureja) Plants Metabolome.Russian Journal of Plant Physiology. 65: 6.
Qin, L.,Zhang,Y.,Liu,Y., He,H., Han,M., Li,Y., Zeng, M., Wang,X.2018.Recent advances in matrix?assisted laser desorption/ionization mass spectrometry imaging (MALDI?MSI) for in situ analysis of endogenous molecules in plants. Phytochemical Analysis.29:351–364.
Raina, H., Soni, G., Jauhari, N., Sharma, N., Bharadvaja, N.2014. Phytochemical importance of medicinal plants as potential sources of anticancer agents. Himani Turk J Bot.38: 1027-1035.
Shimma, S., Kumada, H.,O.,Taniguchi, H.,Konno, A., Yao, I., Furuta, K.,Matsuda, T., Ito,S. 2016. Microscopic visualization of testosterone in mouse testis by use of imaging mass spectrometry. Anal Bioanal Chem.408:7607-7615.
Sturtevant, D., Lee, Y.J., Chapman, K.D. 2016. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Plant Biotechnology.37:53-60.
Unnati, S., Ripal, S., Sanjeev, A., Niyati, A. 2013.Novel anticancer agents from plants sources.Chinese Journal of Natural Medicines.II (1):0016-0023.
Villagra, J. G., Salvador, A. R., Nesi, A. N., Cohen, J. D., Díaz, M. M. R. 2018. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiology and Biochemistry. 124: 136-145.
Wu, T.S., Sua, C.R., Lee, K.H. (2012): Cytotoxic and anti-HIV phenanthroindolizidine alkaloids from Cryptocarya chinensis, Nat Prod Commun.,7(6), 725–727

Most read articles by the same author(s)