Evaluating the stomach content of Wild Scalloped Spiny Lobster (Panulirus homarus)

##plugins.themes.bootstrap3.article.main##

MUHAMAD AMIN
ANIS FITRIA
AKHMAD T. MUKTI
ANDI BASO MANGUNTUNGI
SHAFWAN AMRULLAH
SAHRUL ALIM
MELISSA BEATA MARTIN

Abstract

Abstract. Amin M, Fitria A, Mukti AT, Manguntungi AB, Amrullah S, Alim S, Martin MB. 2022. Evaluating the stomach content of Wild Scalloped Spiny Lobster (Panulirus homarus). Biodiversitas 23: 6397-6403. The high demand for spiny lobster seeds has placed intense pressure on the lobsters’ wild stock in Indonesia. To address this issue, a hatchery was developed to produce scalloped spiny lobster larvae. However, the dietary requirements after the yolk sac has been depleted have proven to be a significant challenge. Thus, the present study aimed to identify the potential live diet of scalloped spiny lobster larvae by identifying the stomach contents of lobster larvae captured in the wild. Fifteen scalloped spiny lobsters at the post-larval stage were collected from three fishing grounds: Gerupuk Bay (Lombok Island), Tawang Bay (East Java), and Prigi Bay (East Java), Indonesia. The stomach of each scalloped spiny lobster was dissected under a dissecting microscope and its contents were observed under a binocular microscope for plankton identification and abundance. The stomach contents of scalloped spiny lobster resulted in five identified plankton species collected from Prigi Bay [Tintinnopsis sp. (37.5%), Grammatophora sp. (25%), Synedra sp. (18.8%), Phormidium sp. (4.3%), and Rhizisolenia sp. (4.3%)]; six plankton species collected from Tawang Bay [Ochromonas sp. (32.3%), Synedra sp. (20.6%), Tintinnopsis sp. (14.7%), Uronema sp. (14.7%), Coscinodiscuss sp. (2.9%), and Planktoniella sp. (2.9%)]; and six plankton species collected from Gerupuk Bay [Synedra sp. (33.3%), Chlorococcum sp. (33.0%), Phormidium sp. (13.3%), Gymnidinium sp. (6.6%), unidentified Cirripedia (3.3%), Rhizosolenia sp. (3.0%)]. Of these plankton, Synedra sp. and Rhizolenia sp. were the most common representatives in the stomach of all lobster samples. Thus, assessing these two plankton genera is highly recommended for future studies.

##plugins.themes.bootstrap3.article.details##

References
Amin, M., Harlyan, L. I., Khamad, K., Diantari, R. 2022. Profiling the natural settlement habitat of spiny lobster, Panulirus spp. to determine potential diets and rearing conditions in a lobster hatchery. Biodiversitas Journal of Biological Diversity, 23(6). doi:https://doi.org/10.13057/biodiv/d230615
Amin, M., Kumala, R. R. C., Mukti, A. T., Lamid, M., Nindarwi, D. D. 2022. Metagenomic profiles of core and signature bacteria in the guts of white shrimp, Litopenaeus vannamei, with different growth rates. Aquaculture, 550, 737849. doi:https://doi.org/10.1016/j.aquaculture.2021.737849
Amundsen, P. A., Sánchez?Hernández, J. 2019. Feeding studies take guts–critical review and recommendations of methods for stomach contents analysis in fish. Journal of Fish Biology, 95(6), 1364-1373. doi:https://doi.org/10.1111/jfb.14151
Aqil, F., Munagala, R., Jeyabalan, J., Vadhanam, M. V. 2013. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Letters, 334(1), 133-141.
Bahadir Koca, S., Argun uzunmehmeto?lu, E. 2018. Interactions of season, sex and size on nutrient composition of freshwater crayfish (Astacus leptodactylus Eschscholtz, 1823) from Lake E?irdir. Food Science and Technology, 38, 44-49.
Blamey, L. K., de Lecea, A. M., Jones, L. D. S., Branch, G. M. 2019. Diet of the spiny lobster Jasus paulensis from the Tristan da Cunha archipelago: Comparisons between islands, depths and lobster sizes. Estuarine, Coastal and Shelf Science, 219, 262-272. doi:https://doi.org/10.1016/j.ecss.2019.02.021
Botes, L. 2001. Identification Catalogue Saldanha Bay, South Africa April 2001. In: International Maritime Organization.
Góes, C. A., Lins-Oliveira, J. E. 2009. Natural diet of the spiny lobster, Panulirus echinatus Smith, 1869 (Crustacea: Decapoda: Palinuridae), from São Pedro and São Paulo Archipelago, Brazil. Brazilian Journal of Biology, 69, 143-148.
Harmoko, H., Krisnawati, Y. 2018. Mikroalga Divisi Bacillariophyta yang Ditemukan di Danau Aur Kabupaten Musi Rawas. Jurnal Biologi UNAND, 6(1), 30-35.
Hu, S., Guo, Z., Li, T., Carpenter, E. J., Liu, S., Lin, S. 2014. Detecting In Situ Copepod Diet Diversity Using Molecular Technique: Development of Symbiotic Ciliate-Excluding Eukaryote-Inclusive PCR Protocol.
Intan-Faraha, A., Arshad, A., Harmin, S., Christianus, A., Fadhil-Syukri, M. 2020. Diet composition and feeding strategy of crossbanded barb, Puntioplites bulu (Bleeker, 1851) in Perak River, Peninsular Malaysia. Journal of Environmental Biology, 41, 1399-1406.
Jagger, R. A., Kimmerer, W. J., Jenkins, G. P. 1988. Food of the cladoceran Podon intermedius in a marine embayment. Marine Ecology Progress Series, 245-250.
Jeffs, A. 2007. Revealing the natural diet of the phyllosoma larvae of spiny lobster. BULLETIN-FISHERIES RESEARCH AGENCY JAPAN, 20, 9.
Jernakoff, P., Phillips, B., Fitzpatrick, J. 1993. The diet of post-puerulus western rock lobster, Panulirus cygnus George, at Seven Mile Beach, Western Australia. Marine and Freshwater Research, 44(4), 649-655.
Jones, C. M., Anh, T. L., Priyambodo, B. 2019. Lobster aquaculture development in Vietnam and Indonesia. In Lobsters: Biology, Fisheries and Aquaculture (pp. 541-570): Springer.
Juinio, M. A. R., Cobb, J. S. 1992. Natural diet and feeding habits of the postlarval lobster Homarus americanus. Marine ecology progress series. Oldendorf, 85(1), 83-91.
Lenz, J. 2000. ICES zooplankton methodology manual. In: Academic press.
Macías-Hernández, N., Athey, K., Tonzo, V., Wangensteen, O. S., Arnedo, M., Harwood, J. D. 2018. Molecular gut content analysis of different spider body parts. PloS One, 13(5), e0196589.
Muzayyin, Y., Masyhuri, Darwanto, D. H., Junaidi, E. 2019. Competitiveness and protection policy: the case of Indonesian lobster exports to the Asian markets. International Journal of Trade and Global Markets, 12(3-4), 260-271.
Preston, N., Burford, M., Coman, F., Rothlisberg, P. 1992. Natural diet of larval Penaeus merguiensis (Decapoda: Penaeidae) and its effect on survival. Marine Biology, 113(2), 181-191.
Sugiharto, R., Tjahjono, A. 2021. The Relationship between Plankton Abundance and Abiotic Parameters in the Downstream Section of the Musi River, Palembang. Egyptian Journal of Aquatic Biology and Fisheries, 25(4), 628-642.
Suzuki, N., Murakami, K., Takeyama, H., Chow, S. 2006. Molecular attempt to identify prey organisms of lobster phyllosoma larvae. Fisheries Science, 72(2), 342-349.
Tomas, C. R. 1997. Identifying marine phytoplankton: Elsevier.
Uysal, ?. 2011. Feeding Habits of Crayfish (Astacus leptodactylus Eschscholtz, 1823) Population at the Lake E?irdir. In: Department of Aquaculture, Graduate School of Applied and Natural Sciences ….
Van de Vijver, B., Ector, L. 2020. Analysis of the type material of Synedra perminuta (Bacillariophyceae) with the description of two new Fragilaria species from Sweden. Phytotaxa, 468(1), 89–100-189–100.
Villalejo-Fuerte, M., Muñetón-Gómez, M. D. S., Gárate-Lizárraga, I., García-Domínguez, F. 2005. Gut content, phytoplankton abundance and reproductive season in the black oyster (Hyotissa hyotis, Linné, 1758) at Isla Espiritu Santo, Gulf of California. Journal of Shellfish Research, 24(1), 185-190.
Zaidy, A. B. 2022. Biofloc Consumption, Growth Performance And Water Quality Of African Catfish (Clarias gariepenus) And Tilapia (Oreochromis Niloticus) Cultured In Biofloc System Without Water Exchange. IJNRD-International Journal of Novel Research and Development (IJNRD), 7(4), 550-556?>-550-556?>.