Short Communication: Nematodes associated with Robusta coffee plantations in Malang District, East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

HAGUS TARNO
EYIK WIDYANSYAFICHA MARSUDI
TITI WIDJAYANTI
YOGO SETIAWAN

Abstract

Abstract. Tarno H, Marsudi EW, Widjayanti T, Setiawan Y. 2021. Short Communication: Nematodes associated with Robusta coffee plantations in Malang District, East Java, Indonesia. Biodiversitas 22: 3306-3312. Coffee (Coffea spp.) is an important commodity in Indonesia. Nematodes have different roles, such as plant parasites and non-parasites, and are commonly found in the soil of coffee plantations. This research determined the ecological role, diversity, and abundance of nematodes in three coffee plantations in Malang District, East Java. We used a Whitehead tray to extract and isolate nematodes from the soil and root samples. Nematodes were identified based on their morphological characteristics. Analysis of variance and diversity indices were used to identify the differences among three coffee plantations. We identified eight nematode genera in the Ngantang sub-district site. In the Jatikerto Agrotechnopark and University of Brawijaya Forest sites, six genera were identified. Criconemoides, Pratylenchus, Xiphinema, Helicotylenchus are plant-parasitic nematodes, and Mononchus, Dorylaimus, Rhabditis, and Aphanolaimus are non-plant parasitic nematodes. Non-plant parasitic nematodes were more abundant than plant-parasitic nematodes in all sites. Non-plant parasitic nematode, Dorylaimus was the dominant genus in this study (272 individuals), ca. 35% of the total nematodes collected. In this study, the differences between coffee plantations and soil pH influence nematode abundance. The nematode abundance increases when the soil pH is lower.

##plugins.themes.bootstrap3.article.details##

References
Abdul Rahman SAS, Mohamed ZSN, Bilal Mat MZ, Sidam AK, Othman RY, et al. 2014. Population distribution of plant-parasitic nematodes of bananas in Peninsular Malaysia. Sains Malaysiana 43(2): 175–183.
Adhikari M, Isaac EL, Paterson RRM, Maslin MA. 2020. A review of potential impacts of climate change on coffee cultivation and mycotoxigenic fungi. Microorganisms 8(10): 1–12. DOI: 10.3390/microorganisms8101625.
Asyia IN, Mudakir I, Hoesain M, Pradana AP, Djunaidy A, et al. 2020. Consortium of endophytic bacteria and rhizobacteria effectively suppresses the population of pratylenchus coffeae and promotes the growth of robusta coffee. Biodiversitas 21(10): 4702–4708. DOI: 10.13057/biodiv/d211032.
Byrareddy V, Kouadio L, Mushtaq A, Stone R. 2019. Sustainable production of robusta coffee under a changing climate: A 10-year monitoring of fertilizer management in coffee farms in Vietnam and Indonesia. Agronomy 9(9). DOI: 10.3390/agronomy9090499.
Campos V, Villain L. 2005. Nematode parasites of coffee and cocoa. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture: Second Edition. p. 529–580
Cobb NA. 1918. Estimating the nema population of soil, with special reference to the sugar-beet and root-gall nemas, Heterodera schachtii Schmidt and Heterodera radicicola (Greef) Mu?ller. Govt. Print. Off.
Dias R, Benassi M. 2015. Discrimination between Arabica and Robusta Coffees Using Hydrosoluble Compounds: Is the Efficiency of the Parameters Dependent on the Roast Degree? Beverages 1(3): 127–139. DOI: 10.3390/beverages1030127.
Eisenhauer N, Beßler H, Engels C, Gleixner G, Habekost M, et al. 2010. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91(2): 485–496. DOI: https://doi.org/10.1890/08-2338.1.
Eskandari A, Clausi M, Rappazzo G, Asghari R, Vinciguerra M. 2016. Description and molecular characterisation of two new species of Dorylaimidae (Dorylaimida: Nematoda) from Iran, with a compendium of all the nominal species of Dorylaimus Dujardin, 1845. Nematology 18. DOI: 10.1163/15685411-00002960.
Fanelli E, Troccoli A, De Luca F. 2018. Functional Variation of Two Novel Cellulases, Pv-eng-5 and Pv-eng-8, and the Heat Shock 90 Gene, Pv-hsp-90, in Pratylenchus vulnus and Their Expression in Response to Different Temperature Stress. Int. J. Mol. Sci. 20(1). DOI: 10.3390/ijms20010107.
Fortuner R. 1988. Nematode Identification and Expert System Technology. Nematode Identif. Expert Syst. Technol. DOI: 10.1007/978-1-4684-9016-9.
Goodey T, Goodey JB. 1963. Soil and freshwater nematodes?: rewritted by J.B. Goodey. Methuen, London.
Griffiths B, Neilson R, Bengough A. 2003. Soil factors determined nematode community composition in a two year pot experiment. Nematology 5: 889–897. DOI: 10.1163/156854103773040808.
Inomoto M, Oliveira C. 2008. Coffee-Associated Pratylenchus spp. – Ecology and Interactions with Plants. Plant-Parasitic Nematodes of Coffee. p. 51–64
Jones M, Fosu-Nyarko J. 2014. Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Ann. Appl. Biol. 164. DOI: 10.1111/aab.12105.
Khan MR. 2020. Nematode infestation, a potential threat to Indian forests. Indian Phytopathol. 73(3): 397–414. DOI: 10.1007/s42360-020-00228-9.
Khan Z, Kim YH. 2007. A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl. Soil Ecol. 35: 370–379. DOI: 10.1016/j.apsoil.2006.07.007.
Krebs CJ. 1999. Ecological Methodology. Ann. Surg.: 620. DOI: 10.1007/s007690000247.
Krishnan S. 2017. Sustainable Coffee Production. Oxford Res. Encycl.: 1–34. DOI: 10.1093/acrefore/9780199389414.013.224.
Lazarova S, Coyne D, Rodríguez MG, Peteira B, Ciancio A. 2021. Functional diversity of soil nematodes in relation to the impact of agriculture—a review. Diversity 13(2): 1–22. DOI: 10.3390/d13020064.
Mai WF. 1988. Pictorial Key to Genera of Plant Parasitic Nematodes. Plenum Press: New York.
Matute M, Manning YA, Kaleem MI. 2012. Community Structure of Soil Nematodes Associated with Solanum Tuberosum. J. Agric. Sci. 5(1): 44–53. DOI: 10.5539/jas.v5n1p44.
Maundu J, Kimenju J, Muiru MW, Wachira PM, Gichuru EK. 2014. Plant parasitic nematodes associated with coffee in Kenya and factors influencing their occurrence, abundance and diversity. J. Biol. Agric. Healthc. 4(3): 120–129.
Mitiku M. 2018. Plant-Parasitic Nematodes and Their Management: A Review. Agric. Res. Technol. Open Access J. 16. DOI: 10.19080/ARTOAJ.2018.16.55580.
Nisa RU, Tantray AY, Kouser N, Allie KA, Wani SM, et al. 2021. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi J. Biol. Sci. DOI: https://doi.org/10.1016/j.sjbs.2021.02.046.
Nurbahar IR. 2015. Statistik Perkebunan Indonesia. Dir. Gen. Estate Crop. Minist. Agric. [Indonesian]
Oksanen, J. 2015. Vegan?: ecological diversity. 1(2): 1–12. doi: 10.1029/2006JF000545.
Pohlan H, Pérez VD. 2011. Soils, Plant Growth And Crop Production Soils, Plant Growth And Crop Production. Eolss Publishers, Oxford, UK Editors: Ed. Willy H. Verheye.
R Core Development Team. 2019. R: A Language and Environment for Statistical Computing.
Ryss AY. 2017. A Simple Express Technique to Process Nematodes for Collection Slide Mounts. J. Nematol. 49(1): 27–32. DOI: 10.21307/jofnem-2017-043.
Sohlenius B, Boström S, Viketoft M. 2011. Effects of plant species and plant diversity on soil nematodes - A field experiment on grassland run for seven years. Nematology 13: 115–131. DOI: 10.1163/138855410X520945.
Swibawa I. 2014. Komunitas Nematoda pada Tanaman Kopi (Coffea Canephora Var. Robusta) Muda di Kabupaten Tanggamus Lampung. AGROTROP 7: 139–147. [Indonesian]
Swibawa IG, Aeny TN. 2010. Nematode Diversity in a Range of Land Use Types in Jambi Benchmark Indonesia. J. Hama dan Penyakit Tumbuh. Trop. 10(2): 162–171. DOI: 10.23960/j.hptt.210162-171.
Tarjan AC, Lab N. 1997. Interactive diagnostic key to plant parasitic, freeliving, and predaceous nematodes. J. Water Pollut. Cont. Fed. 49: 2318–2337.
Tarno H, Septia ED, Aini LQ. 2016. Microbial Community Associated With Ambrosia Beetle , Euplatypus parallelus On Sonokembang, Pterocarpus indicus in Malang. AGRIVITA J. Agric. Sci. 38(81): 312–320.
Viketoft M, Bengtsson J, Sohlenius B, Berg MP, Petchey O. 2009. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology 90(1): 90–99. DOI: 10.1890/08-0382.1.
Viketoft M, Sohlenius B. 2011. Soil nematode populations in a grassland plant diversity experiment run for seven years. Appl. Soil Ecol. 48(2): 174–184. DOI: https://doi.org/10.1016/j.apsoil.2011.03.008.
Wang C, Bruening G, Williamson VM. 2009. Determination of Preferred pH for Root-knot Nematode Aggregation Using Pluronic F-127 Gel. J. Chem. Ecol. 35(10): 1242–1251. DOI: 10.1007/s10886-009-9703-8.
Widowati R, Indarti A, Rahayu B. 2014. Distribution of Non Plant Parasitic Nematodes Genera in Arabica Coffee. J. Perlindungan Tanam. Indones. 18(1): 24–32.
Yan J, Youzheng Z, Crawford K, Chen X, Yu S. 2020. Plant genotypic diversity effects on soil nematodes vary with trophic level. New Phytol. 229. DOI: 10.1111/nph.16829.
Zimmermann A. 1898. De nematoden der koffiewortels. G. Kolff & Co., Batavia
Zullo JJ, Pinto H, Assad E, Avila A. 2011. Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Clim. Change 109: 535–548. DOI: 10.1007/s10584-011-0058-0.