Isolation, identification, and characterization of phosphate solubilizing bacteria, Paenibacillus sp., from the soil of Danum Valley Tropical Rainforest, Sabah, Malaysia
##plugins.themes.bootstrap3.article.main##
Abstract
While phosphorus (P) is a vital element for the plant to grow, only 0.1% of the phosphate soil is directly to be uptake by plants. Consequently, P fertilizer, which is mostly taken from unrenewable resources of phosphate rock, is practically added into the croplands. Nevertheless, as the demand for this fertilizer kept increasing, the availability of resources and environmental issues are currently raising wide concerns. Alternatively, soil phosphate solubilizing bacteria (PSB) is promising to be further developed as a biofertilizer to increase the availability of P elements for plants. This study aims to screen and characterize novel PSB from the tropical rainforest soil. The soil samples were collected from the Danum Valley tropical rainforest, Sabah. Phosphatase solubilizing bacteria were then screened using the NBRIP Agar selective media. The screening results yielded five colonies, designated as PSB1, PSB2, PSB3, PSB4, and PSB5, displaying halos, with an average diameter of 10mm. Further, 16s rRNA gene sequence analysis using BLASTn suggested that PSB1, PSB2, PSB3, PSB4, and PSB5 were designated as Bacillus sp. PSB01, Pseudomonas oryzyhabitans PSB02, Staphylococcus pasteuri PSB03,
Paenibacillus sp. PSB04, and Staphylococcus pasteuri PSB05, respectively. Interestingly, the Paenibacillus group is a promising biofertilizer and is currently used in the global agriculture industry. Accordingly, Paenibacillus sp. PSB04 was then selected for further characterization using Gram staining and observed under scanning electron microscope (SEM). The Gram staining revealed that Paenibacillus sp. PSB04 is a Gram-negative bacterium with a rod shape, which is in good agreement with the SEM result. The specific phosphatase activity of the extracellular fraction of this bacterium was 7378.12 U mg-1 which is the highest activity compared to previous studies. This study provides an early insight into an excellent phosphate solubilizing bacterium for the agriculture industry obtained from Danum Valley.
Paenibacillus sp. PSB04, and Staphylococcus pasteuri PSB05, respectively. Interestingly, the Paenibacillus group is a promising biofertilizer and is currently used in the global agriculture industry. Accordingly, Paenibacillus sp. PSB04 was then selected for further characterization using Gram staining and observed under scanning electron microscope (SEM). The Gram staining revealed that Paenibacillus sp. PSB04 is a Gram-negative bacterium with a rod shape, which is in good agreement with the SEM result. The specific phosphatase activity of the extracellular fraction of this bacterium was 7378.12 U mg-1 which is the highest activity compared to previous studies. This study provides an early insight into an excellent phosphate solubilizing bacterium for the agriculture industry obtained from Danum Valley.
##plugins.themes.bootstrap3.article.details##
References
Aiba H, Nishiya Y, Ojima Y, Azuma M. 2017. Over-expression, characterization, and modification of highly active alkaline phosphatase from a Shewanella genus bacterium. Bioscience, Biotechnology, and Biochemistry 81:10,1994-2001. DOI: 10.1080/09168451.2017.1356217
Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology. 8(JUN) : 1–8. DOI: 10.3389/fmicb.2017.00971
Angelina E, Papatheodorou EM, Demirtzoglou T, Monokrousos N. 2020. Effects of Bacillus subtilis and Pseudomonas fluorescens Inoculation on Attributes of the Lettuce (Lactuca sativa L.) Soil Rhizosphere Microbial Community: The Role of the Management System. Agronomy. DOI: 10.3390/agronomy10091428
Aw YK, Ong KS, Lee LH, Cheow YL, Yule CM, Lee SM. 2016. Newly isolated Paenibacillus tyrfis sp. nov., from Malaysian tropical peat swamp soil with broad spectrum antimicrobial activity. Frontiers in Microbiology, 7(MAR), 1–9. DOI: 10.3389/fmicb.2016.00219
Balabanova L, Golotin V, Kovalchuk S, Bulgakov A, Likhatskaya G, Son O, Rasskazov V. 2014. A Novel Bifunctional Hybrid with Marine Bacterium Alkaline Phosphatase and Far Eastern Holothurian Mannan-Binding Lectin Activities. PLOS ONE 9(11):e112729. DOI: 10.1371/journal.pone.0112729
Behera BC, Yadav H, Singh S K, Sethi BK, Mishra RR, Kumari S, Thatoi H. 2017. Alkaline phosphatase activity of a phosphate solubilizing Alcaligenes faecalis , isolated from mangrove soil. Biotechnology Research and Innovation 1(1), 101–111. DOI: 10.1016/j.biori.2017.01.003
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Bourne PE. 2000. The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. DOI: 10.1093/nar/28.1.235
Billah M, Khan M, Bano A, Hassan TU, Munir A, Gurmani AR. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal. 36(10) : 904–916.DOI: 10.1080/01490451.2019.1654043
Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IS. 2020. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 10(1), 2858. DOI: 10.1038/s41598-020-59793-8
Campagnolla C, Rametsteiner E, Gutierrez D. 2019. Sustainable agriculture and food systems: Towards a third agricultural revolution. In From Fome Zero to Zero Hunger: A global perspective. (140–157). Rome, FAO. DOI: 10.18356/87a6946c-en
Cavalli, A., Salvatella, X., Dobson, C. M., Vendruscolo, M. 2007. Protein structure determination from NMR chemical shifts. Proceedings of the National Academy of Sciences, 104(23), 9615 LP – 9620. DOI: 10.1038/s41598-020-59793-8
Chin CFS, Furuya Y, Zainudin MHM, Ramli N, Hassan MA, Tashiro Y, Sakai K. 2017. Novel multifunctional plant growth–promoting bacteria in co-compost of palm oil industry waste. Journal of Bioscience and Bioengineering, 124(5), 506–513. DOI: 10.1016/j.jbiosc.2017.05.016
Chu Y, Yu X, Jin X, Wang Y, Zhao D, Zhang P, Sun G, Zhang Y. 2019. Purification and characterization of alkaline phosphatase from lactic acid bacteria. RSC Adv 9. 354–360. DOI: 10.1039/c8ra08921c
du Plessis E, Theron J, Berger E, Louw M. 2007. Evaluation of the Staphylococcus aureus Class C Nonspecific Acid Phosphatase (SapS) as a Reporter for Gene Expression and Protein Secretion in Gram-Negative and Gram-Positive Bacteria. Applied and Environmental Microbiology 73(22), 7232 – 7239. DOI: 10.1128/AEM.01030-07
Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. 2016. Current knowledge and perspectives of Paenibacillus: A review. Microbial Cell Factories 15(1), 203. DOI: 10.1186/s12934-016-0603-7
Green JJ, Dawson LA, Proctor J, Duff EI, Elston DA. 2005. Fine root dynamics in a tropical rain forest is influenced by rainfall. Plant and Soil 276(1–2), 23–32. DOI: 10.1007/s11104-004-0331-3
Haruna E, Zin NM, Adams JM. 2017. Draft genome sequence of an endophytic bacterium, Paenibacillus tyrfis strain SUK123, isolated from Santiria apiculata stem. Genomics Data, 14(August), 44–46. DOI: 10.1016/j.gdata.2017.08.005
Hii YS, San, CY, Lau SW, Danquah MK. 2020. Isolation and characterisation of phosphate solubilizing microorganisms from peat. Biocatalysis and Agricultural Biotechnology 26, 101643. DOI: 10.1016/j.bcab.2020.101643
Huang H, Zhang F, Liu M, Cui Y, Sun Q, Zhu J, … Bao S. 2017. Paenibacillus silvae sp. nov., isolated from a tropical rainforest soil. International Journal of Systematic and Evolutionary Microbiology, 67(4), 795–799. DOI: 10.1099/ijsem.0.001608
Huang XF, Zhou D, Guo J, Manter DK, Reardon KF, Vivanco JM. 2015. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions. Journal of Applied Microbiology, 118(3), 672–684. DOI: 10.1111/jam.12720
Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA. 2017. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience 67(4): 386–391. DOI: 10.1093/biosci/bix010
Ina-Salwany MY, Hishammuddin H, Zulperi Z, Salema M, Karim M, Natrah FMI. 2015. Elucidating the probiotic potential of Malaysian Paenibacillus pabuli against vibrio alginolyticus in Artemia culture. Asian Journal of Agricultural Research, 9(5), 223–236. DOI: 10.3923/ajar.2015.223.236
Ishibashi M, Oda K, Arakawa T, Tokunaga M. 2011. Cloning, expression, purification and activation by Na ion of halophilic alkaline phosphatase from moderate halophile Halomonas sp. 593. Protein Expression and Purification 76(1): 97–102. DOI: 10.1016/j.pep.2010.09.013
Ishibashi M, Yamashita S, Tokunaga M. 2005. Characterization of Halophilic Alkaline Phosphatase from Halomonas sp . 593 , a Moderately Halophilic Bacterium. Bioscience, Biotechnology and Biochemistry 69(6), 1213–1216. DOI: 10.1271/bbb.69.1213
Khalid A, Arshad M, Shaharoona B, Mahmood T. 2009. Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS (Ed.), Microbial Strategies for Crop Improvement. Springer-Verlag, Berlin, Heidelberg. DOI: 10.1007/978-3-642-01979-1
Kim J, Jung HS, Baek JH, Chun BH, Khan SA, Jeon CO. 2021. Paenibacillus silvestris sp. nov., Isolated from Forest Soil. Current Microbiology, 78(2), 822–829. DOI: 10.1007/s00284-020-02333-4
Komatsuzaki M, Ohta H. 2013. Sustainable agriculture practices. In Designing our Future (38–49). United Nations. DOI: 10.18356/4f898e93-en
Kumar M, Mishra S, Dixit V, Kumar M, Agarwal L, Chauhan PS, Nautiyal CS. 2016. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signaling & Behavior 11(1): e1071004. DOI: 10.1080/15592324.2015.1071004
Liu X, Li Q, Li Y, Guan G, Chen S. 2019. Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth. PeerJ, 7, e7445. DOI: 10.7717/peerj.7445
Lladó S, López-Mondéjar R, Baldrian P. 2017. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews, 81(2), e00063-16. DOI: 10.1128/MMBR.00063-16
Mogollón JM, Beusen AHW, van Grinsven HJM, Westhoek H, Bouwman AF. 2018. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change: 50, 149–163. DOI: 10.1016/j.gloenvcha.2018.03.007
Mohamed AE, Nessim MG, Abou-el-seoud II, Darwish KM, Shamseldin A. 2019. Isolation and selection of highly effective phosphate solubilizing bacterial strains to promote wheat growth in Egyptian calcareous soils. Bulletin of the National Research Centre. 43(1) : 203.DOI: 10.1186/s42269-019-0212-9
Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiologic Letters 170(436): 265–270. DOI: 10.1111/j.1574-6968.1999.tb13383.x
Panda B, Rahman H, Panda J. 2016. Phosphate solubilizing bacteria from the acidic soils of Eastern Himalayan region and their antagonistic effect on fungal pathogens. Rhizosphere, 2, 62–71. DOI: 10.1016/j.rhisph.2016.08.001
Passera A, Marcolungo L, Casati P, Brasca M, Quaglino F, Cantaloni C, Delledonne M. 2018. Hybrid genome assembly and annotation of Paenibacillus pasadenensis strain R16 reveals insights on endophytic life style and antifungal activity. PLoS ONE 13(1). DOI: 10.1371/journal.pone.0189993
Pathania P, Rajta A, Singh PC, Bhatia R. 2020. Role of plant growth-promoting bacteria in sustainable agriculture. Biocatalysis and Agricultural Biotechnology 30: 101842. DOI: 10.1016/j.bcab.2020.101842
Pepper IL, Gerba CP. 2015. Chapter 8 - Environmental Sample Collection and Processing. In Pepper IL, Gerba CP, Gentry TJ. (Eds.), Environmental Microbiology Academic Press, San Diego.
Riutta T, Malhi Y, Khoon KL et al. 2018. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Glob Change Biol. 24: 2913–2928. DOI: 10.1111/gcb.14068
Rivas R, Gutiérrez C, Abril A, Mateos PF, Martínez-Molina E, Ventosa A, Velázquez E. 2005. Paenibacillus rhizosphaerae sp. nov., isolated from the rhizosphere of Cicer arietinum. International Journal of Systematic and Evolutionary Microbiology 55(3): 1305–1309. DOI: 10.1099/ijs.0.63513-0
Sabat A J, van Zanten E, Akkerboom V, Wisselink G, van Slochteren K, de Boer R F, Hendrix R, Friedrich A W, Rossen JWA, Kooistra-Smid AMD. 2017. Targeted next-generation sequencing of the 16S-23S rRNA region for culture-independent bacterial identification - increased discrimination of closely related species. Scientific Reports. 7(1): 3434. DOI: 10.1038/s41598-017-03458-6
Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2(Richardson 1994), 587. DOI: 10.1186/2193-1801-2-587
Shtark OY, Borisov AY, Zhukov VA, Provorov NA, Tikhonovich IA. 2010. Intimate Associations of Beneficial Soil Microbes with Host Plants. In Dixon GR & Tilston EL (Eds.), Soil Microbiology and Sustainable Crop Production. Springer, Dordrecht. DOI: 10.1007/978-90-481-9479-7
Stecher G, Tamura K, Kumar S. 2020. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution, 37(4): 1237–1239. DOI: 10.1093/molbev/msz312
Suliasih, S. 2005. Isolation and Identification of Phosphate Solubilizing and Nitrogen Fixing Bacteria from Soil in Wamena Biological Garden, Jayawijaya, Papua. Biodiversitas, Journal of Biological Diversity.6(5):175-177. DOI: 10.13057/biodiv/d060307
Tang A, Haruna AO, Majid NMA, Jalloh MB. 2020. Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate-Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms, 8(3), 442. DOI: 10.3390/microorganisms8030442
Taylor EB, Williams MA. 2010. Microbial protein in soil: Influence of extraction method and C amendment on extraction and recovery. Microbial Ecology 59(2): 390–399. DOI: 10.1007/s00248-009-9593-x
Tin HS, Palaniveloo K, Anilik J, Vickneswaran M, Tashiro Y, Vairappan CS, Sakai K. 2017. Impact of Land-use Change on Vertical Soil Bacterial Communities in Sabah. Microbial Ecology. 75(2) : 459–467. DOI : 10.1007/s00248-017-1043-6
Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, Go R, Rahim RA, Husni MH, Chun J, Adams JM. 2012. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb Ecol. 64(2):474-84. DOI: 10.1007/s00248-012-0028-8
Ushio M, Kitayama K, Balser TC. 2010. Tree species effects on soil enzyme activities through effects on soil physicochemical and microbial properties in a tropical montane forest on Mt. Kinabalu, Borneo. Pedobiologia 53(4): 227–233. DOI: 10.1016/j.pedobi.2009.12.003
Wojciechowski CL, Cardia JP, Kantrowitz ER.2002. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity. Protein Sci.11(4):903-911. DOI:10.1110/ps.4260102
Yang T, Liu T, Gan J, Yu K, et al. 2019. Structural Insight into the Mechanism of Staphylococcus aureus Stp1 Phosphatase. ACS Infectious Diseases 5(6): 841–850. DOI: 10.1021/acsinfecdis.8b00316
Most read articles by the same author(s)
- BAK ZAIBAH FAZAL, CAHYO BUDIMAN, ZARINA AMIN, CLEMENTE MICHAEL WONG VUI LING, Screening, isolation, and characterization of amylase-producing bacteria from Poring Hot Spring Sabah, Malaysia , Biodiversitas Journal of Biological Diversity: Vol. 23 No. 6 (2022)