Abundance and diversity of edaphic mites (Arachnida, Acari) under different forest management systems in Indonesia

##plugins.themes.bootstrap3.article.main##

MUHAMMAD IHSAN
RETNO DYAH PUSPITARINI
https://orcid.org/0000-0002-9315-1849
AMINUDIN AFANDHI
https://orcid.org/0000-0002-2638-9347
ITO FERNANDO
https://orcid.org/0000-0001-6776-4847

Abstract

Abstract. Ihsan M, Puspitarini RD, Afandhi A, Fernando I. 2021. Abundance and diversity of edaphic mites (Arachnida, Acari) under different forest management systems in Indonesia. Biodiversitas 22: 3685-3692. Edaphic mites play crucial roles in maintaining ecosystem services that are essential to human needs. However, the conversion of natural habitats followed by agricultural intensification may adversely affect edaphic mites. The objective of this study was to investigate the influence of different management systems on edaphic mite abundance, richness, and diversity in tropical rain forests in Indonesia. There were five forest management systems, which were as follows: secondary forest, production forest (pine monoculture), and three agroforestry systems (pine + coffee, mahogany + coffee, and mahogany + new cocoyam). We established a transect containing five research plots for each forest management system. Litter and soil from each plot were collected from December to March 2021. Temperature, relative humidity, and pH of litter and soil, as well as litter thickness, were measured. We found that edaphic mite abundance, richness, and diversity in the secondary forest were similar to managed forests. However, the aforementioned variables were significantly higher in “pine” systems than in “mahogany” systems. Our analysis evidenced positive correlations between litter thickness and edaphic mite abundance, richness, and diversity. Our findings may assist in selecting the appropriate forest management systems to rationalize the conversion of secondary forests to production forests and agroforestry.

##plugins.themes.bootstrap3.article.details##

References
Acharya S, Datta TK. 2019. Diversity of soil cryptostigmatid mites (Acari: Oribatida) of Himachal Pradesh, India, from an altitudinal perspective. J Asia-Pac Biodiv 12: 357-362. DOI:10.1016/j.japb.2019.03.014
Amani M, Khajehali J, Moradi-Faradonbeh M, Macchioni F. 2020. Species diversity of soil mites (Acari: Mesostigmata) under different agricultural land use types. Persian J Acarol 9(4): 353-366. DOI:10.22073/pja.v9i4.59610
Ardestani MM, Keshavarz-Jamshidian M, van Gestel CAM, van Straalen NM. 2020. Avoidance tests with the oribatid mite Oppia nitens (Acari: Oribatida) in cadmium-spiked natural soils. Exp Appl Acarol 82: 81-93. DOI:10.1007/s10493-020-00536-9
Badejo MA, Tian G. 1999. Abundance of soil mites under four agroforestry tree species with contrasting litter quality. Biol Fertil Soils 30: 107-112. DOI:10.1007/s003740050595
Balogh J, Balogh P. 1992. The Oribatid Mites Genera of the World. The Hungarian National Museum Press, Budapest.
Bedano JC, Cantú MP, Doucet ME. 2006. Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil. Appl Soil Ecol 32: 293-304. DOI:10.1016/j.apsoil.2005.07.009
Behan-Pelletier VM. 1999. Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74(1-3): 411-423. DOI:10.1016/S0167-8809(99)00046-8
Berg J, McClaugherty C. 2020. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer, Cham. DOI:10.1007/978-3-030-59631-6
Bria D, Widyastuti R, Santoso S. 2019. Study of oribatids population on three types of land use at PT Nusantara VIII plantation, Cisarua sub-district Bogor, West Java. J Degrade Min Land Manage 6(2): 1667-1673. DOI:10.15243/jdmlm.2019.062.1667
Cao Z, han X, Hu C, Chen J, Zhang D, Steinberger Y. 2011. Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Appl Soil Ecol 49: 131-138. DOI:10.1016/j.apsoil.2011.06.003
Caruso T, Taormina M, Migliorini M. 2012. Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites. J Anim Ecol 81: 214-221. DOI:10.1111/j.1365-2656.2011.01886.x
de Groot GA, Jagers op Akkerhuis GAJM, Dimmers WJ, Charrier X, Faber JH. 2016. Biomass and diversity of soil mite functional groups respond to extensification of land management, potentially affecting soil ecosystem services. Front Environ Sci. DOI:10.3389/fenvs.2016.00015
de Moraes J, Franklin E, de Morais JW, de Souza JLP. 2011. Species diversity of edaphic mites (Acari: Oribatida) and effects of topography, soil properties and litter gradients on their qualitative and quantitative composition in 64 km2 of forest in Amazonia. Exp Appl Acarol 55: 39-63. DOI:10.1007/s10493-011-9451-7
Dirilgen T, Arroyo J, Dimmers DJ, Faber J, Stone D, da Silva PM, Carvalho F, Schmelz R, Griffiths BS, Fransisco R, Creamer RE, Sousa JP, Bolger T. 2016. Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity. Appl Soil Ecol 97: 86-97. DOI:10.1016/j.apsoil.2015.06.008
Erdmann G, Scheu S, Maraun M. 2012. Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida). Exp Appl Acarol 57: 157-169. DOI:0.1007/s10493-012-9546-9
Evans GO. 1992. Principles of Acarology. CABI, Cambridge.
Gao M, Zhang Z, Liu D, Wu D. 2014. Relative roles of spatial factors, environmental filtering and biotic interactions in fine-scale structuring of a soil mite community. Soil Biol Biochem 79: 68-77. DOI:10.1016/j.soilbio.2014.09.003
Gergócs V, Hufnagel L. 2011. Oribatid mites (Acari: Oribatida) in microcosms – a review. Appl Ecol Environ Res 9(4): 355-368. DOI: 10.15666/aeer/0904_355368
Gergócs V, Rétháti G, Hufnagel L. 2015. Litter quality indirectly influences community composition, reproductive mode and trophic structure of oribatid mite communities: a microcosm experiment. Exp Appl Acarol 67: 335-356. DOI:10.1007/s10493-015-9959-3
González G, Seastedt TR. 2000. Comparison of the abundance and composition of litter fauna in tropical and subalpine forests. Pedobiologia 44(5): 545-555. DOI:10.1078/S0031-4056(04)70070-0
Horodecki P, Jagodzi?ski AM. 2017. Tree species effects on litter decomposition in pure stands on afforested post-mining sites. Forest Ecol Manag 406: 1-11. DOI:10.1016/j.foreco.2017.09.059
Horodecki P, Nowi?ski M, Jagodzi?ski AM. 2018. Advantages of mixed tress stands in restoration of upper soil layers on postmining sites: A five-year litter decomposition experiment. Land Degrad Dev 30(1): 3-13. DOI:10.1002/ldr.3194
Huguier P, Manier N, Owojori OJ, Bauda P, Pandard P, Römbke J. 2015. The use of soil mites in ecotoxicology: a review. Ecotoxicology 24: 1-18. DOI:10.1007/s10646-014-1363-y
Ingimarsdóttir M, Caruso T, Ripa J, Magnúsdóttir ÓB, Migliorini M, Hedlund K. 2012. Primary assembly of soil communities: disentangling the effect of dispersal and local environment. Oecologia 170: 745-754. DOI:10.1007/s00442-012-2334-8
Irmler U. 2006. Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. Eur J Soil Biol 42: 51-62. DOI:10.1016/j.ejsobi.2005.09.016
Kamczyc J, Skorupski M, Dyderski MK, Gazda A, Hachu?ka M, Horodecki P, Ka?ucka I, Malicki M, Pielech R, Smoczyk M, Wierzcholska S, Jagodzi?ski AM. 2018. Response of soil mites (Acari, Mesostigmata) to long-term Norway spruce plantation along a mountain stream. Exp Appl Acarol 76: 269-286. DOI:10.1007/s10493-018-0314-3
Kamczyc J, Turcza?sjki K, Malica J, Urbanowski CK, Kobusiewicz, Pers-Kamczyc E. 2020. Soil near mature oaks is refugium for soil mites (Acari, Mesostigmata) in managed forest. Int J Acarol 46(5): 327-334. DOI: 10.1080/01647954.2020.1804997
Khabir ZH, Nejad KHI, Moghaddam M, Khanjani M. 2015. Community structure of oribatid mites (Acari: Oribatida) in rangelands of West Azerbaijan Province, Iran. Int J Acarol 41(4): 344-355. DOI:10.1080/01647954.2015.1033458
Krantz GW, Walter DE. 2009. A Manual of Acarology: Third Edition. Texas Tech University Press, Lubbock.
Lisafitri Y, Widyastuti R, Santosa DA. 2015. Population dynamics of oribatid mites in the oilpalm plantation area at Bajubang Batanghari Jambi. J Tanah Lingk 17(1): 33-38. DOI:10.29244/jitl.17.1.33-38
N’Dri JK, Seka FA, Pokou PK, N’Da RAG, Lagerlöf J. 2017. Abundance and diversity of soil mite (Acari) communities after conversion of tropical secondary forest into rubber plantations in Grand-Lahou, C ôte d'Ivoire. Ecol Res 32(6): 909-919. DOI:10.1007/s11284-017-1499-3
Navarro-Campos C, Pekas A, Moraza ML, Aguilar A, Garcia-Marí F. 2012. Soil-dwelling predatory mites in citrus: their potential as natural enemies of thrips with special reference to Pezothrips kellyanus (Thysanoptera: Thripidae). Biol Control 63(2): 201-209. DOI:10.1016/j.biocontrol.2012.07.007
Nielsen UN, Oser GHR, Campbell CD, Burslem DFRP, van der Wal R. 2010. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. J Biogeogr 37(7): 1317-1328. DOI:10.1111/j.1365-2699.2010.02281.x
Meehan ML, Song Z, Lumley LM, Cobb TP, Proctor H. 2019. Soil mites as bioindicators of disturbance in the boreal forest in northern Alberta, Canada: testing taxonomy sufficiency at multiple taxonomic levels. Ecol Indic 102: 349-365. DOI:10.1016/j.ecolind.2019.02.043
Minor MA. 2011. Spatial patterns and local diversity in soil oribatid mites (Acari: Oribatida) in three pine plantation forests. Eur J Soil Biol 47: 122-128. DOI:10.1016/j.ejsobi.2011.01.003
Minor MA, Cianciolo JM. 2007. Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Appl Soil Ecol 35: 140-153. DOI:10.1016/j.apsoil.2006.05.004
Mori AS, Ota AT, Fuji S, Seino T, Kabeya D, Okamoto T, Ito MT, Kaneko N, Hasegawa M. 2015. Concordance and discordance between taxonomic and functional homogenization: responses of soil mite assemblages to forest conversion. Oecologia 179: 527-535. DOI:10.1007/s00442-015-3342-2
Murvanidze M, Mumladze L, Todria N, Salakaia M, Maraun M. 2019. Effect of ploughing and pesticides application on oribatid mite communities. Int J Acarol 45(4): 181-188. DOI:10.1080/01647954.2019.1572222
Park J, Mostafiz MM, Hwang HS, Jung DO, Lee KY. 2021. Comparison of the predation capacities of two soil-dwelling predatory mites, Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae), on three thrips species. J Asia-Pac Entomol 24(1): 397-401. DOI:10.1016/j.aspen.2021.01.009
Puspitarini RD, Fernando I, Rachmawati R, Hadi MS, Rizali A. 2021a. Host plant variability affects the development and reproduction of Tetranychus urticae. Int J Acarol. DOI:10.1080/01647954.2021.1915377
Puspitarini RD, Fernando I, Widjayanti T, Ramadhatin A, Husna NL. 2021b. Physicochemical characteristics of stored products affect host preference and biology of Acarus siro (Acari: Acaridae). J Crop Prot 10(2): 281-293
R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
Rueda-Ramírez D, Ramírez AV, Ravelo EE, de Moraes GJ. 2021. Edaphic mesostigmatid mites (Acari: Mesostigmata) and thrips (Insecta: Thysanoptera) in rose cultivation and secondary vegetation areas in the Bogotá plateau, Colombia. Int J Acarol 47(1): 8-22. DOI: 10.1080/01647954.2020.1866666
Schneider K, Maraun M. 2005. Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49(1): 61-67. DOI:10.1016/j.pedobi.2004.07.010
Seastedt TR. 1984. The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29: 25-46. DOI:10.1146/annurev.en.29.010184.000325
Smrž J. 2010. Nutritional biology of oribatid mites from different microhabitats in the forest. In: Sabelis M, Bruin J (eds). Trends in Acarology. Springer, Dordrecht. DOI:10.1007/978-90-481-9837-5_34
Spaans F, Caruso T, Hammer EC, Montgomery I. 2019. Trees in trimmed hedgerows but not tree health increase diversity of oribatid mite communities in intensively managed agricultural land. Soil Biol Biochem 138: 107568. DOI:10.1016/j.soilbio.2019.107568
Sulistyorini E, Widyastuti R, Santoso S. 2018. Diversity of oribatids (Acari) at different land use types in Mentebah, Kapuas Hulu, West Kalimantan. J Degrade Min Land Manage 5(4): 1355-1361. DOI:10.15243/jdmlm.2018.054.1355
Sylvain ZA, Buddle CM. 2010. Effects of forest stand type on oribatid mite (Acari: Oribatida) assemblages in a Southwestern Quebec forest. Pedobiologia 53: 321-325. DOI:10.1016/J.PEDOBI.2010.03.001
Urbanowski CK, Horodecki P, Kamczyc J, Skorupski M, Jagodzi?ski AM. 2018. Succession of mite assemblages (Acari, Mesostigmata) during decomposition of tree leaves in forest stands growing on reclaimed post-mining spoil heap and adjacent forest habitats. Forests 9(11): 718. DOI:10.3390/f9110718
Urbanowski CK, Horodecki P, Kamczyc J, Skorupski M, Jagodzi?ski AM. 2021. Does litter decomposition affect mite communities (Acari, Mesostigmata)? A five-year litterbag experiment with 14 tree species in mixed forest stands growing on a post-industrial area. Geoderma 391: 114963. DOI: 10.1016/j.geoderma.2021.114963
Vacante V. 2016. The Handbook of Mites of Economic Plants: Identification, Bio-ecology and Control. CABI, Wallingford. DOI:10.1079/9781845939946.0001
Wickings K, Grandy AS. 2011. The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biol Biochem 43(2): 351-358. DOI:10.1016/j.soilbio.2010.10.023
Zaitsev AS, Ryabinin NA, Tarasov AI, Shakhab SV. 2020. Potential anthropogenic influence on oribatid mite communities in ancient to modern settlements of the Russian Far East. Int J Acarol 46(5): 322-326. DOI: 10.1080/01647954.2020.1801838
Zhang ZQ. 2003. Mites of Greenhouses: Identification, Biology and Control. CABI, Wallingford. DOI: 10.1079/9780851995908.0000