Chemical characteristics of Falcataria moluccana wood infested by Boktor stem borer (Xystrocera festiva)

##plugins.themes.bootstrap3.article.main##

NOOR FARIKHAH HANEDA
ASEP H SUPRIATNA
HASYYATI SHABRINA
YUNIK ISTIKORINI
ULFAH J. SIREGAR
IMAM WAHYUDI

Abstract

Abstract. Haneda NF, Supriatna AH, Shabrina H, Istikorini Y, Siregar UJ, Wahyudi I. 2021. Chemical characteristics of Falcataria moluccana wood infested by Boktor stem borer (Xystrocera festiva). Biodiversitas 22: 4203-4208. Boktor (Xystrocera festiva Thoms.) is the most destructive and detrimental pest in Falcata plantations in Indonesia. It attacks the inner bark of sapwood when the tree reaches 3-years-old. This study aimed to analyze the chemical characteristics of Falcata woods, which were infested with Boktor in trees aged 3 and 4 years, compared to the healthy tree at 2 years old. The primary chemical components and type of extractive compounds were analyzed using standard procedures. The results showed a decrease in hemicellulose and an increase in lignin content of infected wood. This condition occurs because Boktor larvae prefer hemicellulose rather than lignin, which is related to the presence of enzymes in the digestive system of the larvae. The decreasing extractive contents as trees grow and undergo age-related shifting metabolism can be alleged as the start of Boktor infestation in 3-years-old trees. Boktor infestation also altering the wood chemical components by degrading the lignin that produced 4-vinyl-syringol. The isoeugenol compound is thought to prevent Boktor infestation in the early period of tree growth.

##plugins.themes.bootstrap3.article.details##

References
American Society for Testing and Material. 2007. ASTM D1107-96 Standard test methods for ethanol-toluene solubility of wood. ASTM, West Conshohocken.
Abdel-Shafy HI, Mansour MSM. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian J of Petroleum 25(1): 107-123. DOI: https://doi.org/10.1016/j.ejpe.2015.03.011
Achmadi SS. 1990. Wood Chemicals. editor: Syafii W. Bogor (ID): PAU IPB [in Indonesian].
Agger J, Vikso-Nielsen A, meyer AS. 2010. Enzymatic Xylose Release from Pretreated Corn Bran Arabinoxylan: Differential Effects of Deacetylation and Deferuloylation on Insoluble and Soluble Substrate Fractions. J. Agric. Food. Chem 58(10): 6141-6148. DOI: https://doi.org/10.1021/jf100633f
AlJabr AM, Hussain A, Haq MR, Al-Ayeds HY. 2017. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 22(1): 169. DOI: https://doi.org/10.3390/molecules22010169
Ayudini E. 2010. Perkembangan larva boktor (Xystrocera festiva Pascoe) di dalam artificial diet. [skripsi]. Bogor (ID): Institut Pertanian Bogor.
Bielecka M, Matkowski A. 2019. Age-related variation of polyphenol content and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. Industrial Crops and Products 141: 111743. DOI: https://doi.org/10.1016/j.indcrop.2019.111743
Bohacz J, Kornillowicz-Kowalska. Modification of post industrial lignin by fungal strains of the genus Trichoderma isolated from different composting stages. Journal of Environmental management 266: 110573. DOI: https://doi.org/10.1016/j.jenvman.2020.110573
Byers JA. 1995. Host-Tree Chemistry Affecting Colonization in Bark Beetles. In: Chemical Ecology of Insects 2. Boston (US): Springer. DOI: https://doi.org/10.1007/978-1-4615-1765-8_5
Darwiati W, Anggraeni I. 2018. The Boktor And Tumor Attack At Sengon In The Plantation Of Tea Ciater. Jurnal Sains Natural Universitas Nusa Bangsa 8(2): 59-69 [in Indonesian]. DOI: http://dx.doi.org/10.31938/jsn.v8i2.119
Donaldson JR, Stevens MT, Barnhill HR, Lindroth RL. 2006. Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). National Library of Medicine 32: 1415-1429. DOI: 10.1007/s10886-006-9059-2
Duladi. (2012). Cara cerdas mengendalikan hama dan penyakit pada sengon. Kampus IPB Taman Kencana Bogor: PT. Penerbit IPB Press.
Hölldobler B, Wilson EO. 1990. The Ants. Berlin Heidelberg: Springer-Verlag.
Huang Y, Ho SH, Lee HC, Yap YL. 2002. Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J of stored product research 38(5): 403-412. DOI: https://doi.org/10.1016/S0022-474X(01)00042-X
Husaeni EA. 2010. Xystrocera festiva Thoms (Cerambycidae: Coleoptera): Biologi dan Pengendaliannya pada Hutan Tanaman Sengon. Bogor (ID): IPB Pr.
Ichtisinii A. 2011. Identifikasi komponen kimia kulit dan kayu pohon sengon yang dimakan larva Xystrocera festiva Thoms (Cerambycidae. Coleoptera) [Skripsi]. Bogor (ID): Institut Pertanian Bogor.
Kovalikova Z, Kubes J, Skalicky M, Kuchtickova N, Maskova L, Tuma J, Vachova P, Hejnak V. 2019. Changes in content of polyphenols and ascorbic acid in leaves of white cabbage after pest infestation. MDPI 24914: 2622. DOI: https://doi.org/10.3390/molecules24142622
Liswidowati, Karian M, Syafii W, Suzuki S, Umezawa T, Shimada M. 2001. Isolation of syringaresinol from Paraserianthes falcataria (L.) Nielsen. Wood research: bulletin of the wood research Institute Kyoto University [internet]. 2001 (88): 40-41. [diunduh 2015 Desember 10]. Tersedia pada: https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/53137/1/KJ00000018087.pdf
Mansour K, Mansotjrbek JJ. 1934. On the digestion of wood by insects. Journal of experimental biology 11:.243-256. DOI: https://doi.org/10.1242/jeb.11.3.243
Matsumoto K, Irianto RSB. 1998. Adult biology of the albizia borer, Xystrocera festiva Thomson (Coleoptera: Cerambycidae), based on laboratory breeding, with particular reference to its oviposition schedule. Journal of Tropical Forest Science 10(3): 367-378.
Miambi E, Jusselme MD, Cézard L, Pion F, Baumberger S, Robert A, Lapierre C, Diouf M, Mora P. 2020. Preprint from Research Square. DOI: 10.21203/rs.3.rs-28014/v1.
Miranda I, Sousa V, Ferreira J, pereira H. 2017. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea. PloS One 12(6): e0179268. DOI: https://doi.org/10.1371/journal.pone.0179268
Morais MSM, pereira H. Variation of extractives content in heartwood and sapwood of Eucalyptus globulus trees. Wood Sci technol 46: 709-719. DOI: https://doi.org/10.1007/s00226-011-0438-7
[NIST}. National Institute of Standards and Technology US Department of Commerce. 2018a. Phenol, 2-methoxy-4-(1-propenyl)-. Available at https://webbook.nist.gov/cgi/ cbook.cgi?ID=97-54-1 . Accessed in December 28th 2020.
[NIST}. National Institute of Standards and Technology US Department of Commerce. 2018b. 4-vinylsyringol. Available at https://webbook.nist.gov/cgi/inchi/InChI=1S/C10H12O3/c1-4-7-5-8(12-2)10(11)9(6-7)13-3/h4-6,11H,1H2,2-3H3. Accessed in December 28th 2020.
Prasetya A. 2007. Studi tentang enzim trypsin dan alfa-amylase pada hama boktor serta inhibitor trypsin pada pohon sengon [skripsi]. Bogor: Fakultas kehutanan IPB University.
Rowell RM. 1984. The chemistry of solid wood. 1-st Edn. Washington (US): American Chemical Society.
Siregar UJ, Rahmawati D, Damayanti A. 2019. Finger printing sengon (Falcataria moluccana) accessions resistant to boktor pest and gall-rust disease using microsatellite markers. Biodiversitas 20(9): 2698-2706. DOI: https://doi.org/10.13057/biodiv/d200935
Siregar UJ, Situmorang IM, Pasaribu FA, Lestari A, Istikorini Y, Haneda NF. 2020. Trypsin inhibitor activities as defense mechanism of sengon (Falcataria moluccana) against pest attacks. IOP Conference series: materials science and engineering 935(1): 012034. DOI: https://doi.org/10.1088/1757-899x/935/1/012034
Susilowati W. 2012. Kajian struktur dan perkembangan kayu sengon (Paraserianthes falcataria) pada usia tegakan berbeda berdasarkan tinjauan anatomi dan pola pita protein [skripsi]. Surakarta: FMIPA UNS.
Technical Association of Pulp and Paper Industry. 1978. T 12 os-75 Preparation of wood for chemical analysis (including procedures for removal of extractive and determination of moisture content). TAPPI. Atlanta.
Terpinc P, Polak T, Segatin N, Hanzlowsky A, Ulrih NP, Abramovic A. 2011. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chemistry 128(1): 62-69. DOI: https://doi.org/10.1016/j.foodchem.2011.02.077
Wam HK, Stolter C, Nybakken. 2017. Compositional changes in foliage phenolics with plant age, a natural experiment in boreal forests. Journal of Chemical Ecology 43: 920-928. DOI: https://doi.org/10.1007/s10886-017-0881-5
Witzell J, Gref, Nasholm T. 2003. Plant-part specific and temporal variation in phenolic compounds of boreal bilberry (Vaccinium myrtillus) plants. Biochemical Systematics and Ecology 31(2): 115-127. DOI: https://doi.org/10.1016/S0305-1978(02)00141-2
Yactayo-Chang JP, Tang HV, Mendoza J, Christensen SA, Block AK. 2020. Plant defense chemicals against insect pests. Agronomy 10: 1156. DOI: https://doi.org/10.3390/agronomy10081156
Yamasaki M, Kikuzawa K. 2003. Temporal and spatial variations in leaf herbivory within a canopy of Fagus crenata. Oecologia. 137: 226-232. DOI: https://doi.org/10.1007/s00442-003-1337-x
Yunasfi, Hadi S, Rahayu G, Santoso T. 2009. Fungi associated with Xystrocera festiva attacking the stem of Paraserianthes falcataria [Indonesian]. Jurnal Penelitian Hutan Tanaman 6(4): 251-259.
Zhao T, Borg-Karlson AK, Erbilgin N, Krokene P. 2011. Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle, Ips typographus. Oecologia 167: 691-699. DOI: https://doi.org/10.1007/s00442-011-2017-x
Zhao X, Zhang L, Liu D. 2011. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts, and Biorefining 6(6): 465-482. DOI: https://doi.org/10.1002/bbb.1331