Comparison of individual tree aboveground biomass estimation in community forests using allometric equation and expansion factor in Magetan, East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

RAHMANTA SETIAHADI

Abstract

Abstract. Setiahadi R. 2021. Comparison of individual tree aboveground biomass estimation in community forests using allometric equation and expansion factor in Magetan, East Java, Indonesia. Biodiversitas 22: 3899-3909. The use of allometric equation and biomass expansion factor can facilitate more efficient tree biomass estimation. This study evaluates the accuracy of the allometric equation and expansion factor for quantifying the individual tree aboveground biomass in community forest tree species. Destructive sampling n on 120 trees from four different species: Falcataria moluccana, Melia azedarach, Swietenia macrophylla, and Tectona grandis. For each tree sample, aboveground biomass measured at every tree component, i.e., stem, branches, and leaves. The allometric equation developed using regression analysis with several predictor variables, such as diameter at breast height (D), squared diameter at breast height combined with tree height (D2H), and D and H separately. On another side, the biomass expansion factor was calculated based on the total aboveground biomass and stem biomass ratio. The results found the highest mean aboveground biomass for all species are M. azedarach (326.36±88.40 kg tree-1), S. macrophylla (244.47±98.73 kg tree-1), T. grandis (173.31±80.97 kg tree-1), and F. moluccana (56.56±23.10 kg tree-1). The most significant average biomass expansion factor observed in M. azedarach (1.78±0.03), adhered by T. grandis (1.66±0.09), S. macrophylla (1.61±0.04), and F. moluccana (1.59±0.06). The equation ln? = lna + b x ln (D) was best for estimating aboveground biomass in each tree component and a total of four species with an accuracy of more than 90%.

##plugins.themes.bootstrap3.article.details##

References
Abrantes KKB, Paiva LM, De Almeida RG, Urbano E, Ferreira AD, Mazucheli J. 2019. Modeling the individual height and volume of two integrated crop-livestock-forest systems of eucalyptus spp. In the Brazilian Savannah. Acta Sci. 41:1–8. Doi: https://doi.org/10.4025/actasciagron.v41i1.42626
Altanzagas B, Luo Y, Altansukh B, Dorjsuren C, Fang J, Hu H. 2019. Allometric equations for estimating the above-ground biomass of five forest tree species in Khangai, Mongolia. Forests. 10:1–17. Doi: https://doi.org/10.7226/jtfm.27.1.24
Amirta R, Y uliansyah Y, Angi EM, Ananto BR, Setiyono B, Haqiqi MT, Septians GA, Lodong M, Oktavianto RN. 2016. Plant diversity and energy potency of community forestin East Kalimantan, Indonesia: Searching for fast growing wood species for energy production. Nusant. Biosci. 8:22–31. Doi: https://doi.org/10.13057/NUSBIOSCI%2FN080106
Aubry E, Dinant S, Vilaine F, Bellini C, Le Hir R. 2019. Lateral transport of organic and inorganic solutes. Plants. 8:1–25. Doi: https://doi.org/10.3390/plants8010020
Besar NA, Suardi H, Phua MH, James D, Mokhtar MB, Ahmed MF. 2020. Carbon stock and sequestration potential of an agroforestry system in Sabah, Malaysia. Forests. 11:1–16. Doi: https://doi.org/10.3390/f11020210
Boedhihartono AK. 2017. Can Community forests be compatible with biodiversity conservation in Indonesia? Land. 6:1–17. Doi: http://dx.doi.org/10.3390/land6010021
Bouriaud O, Don A, Janssens IA, Marin G, Schulze ED. 2019. Effects of forest management on biomass stocks in romanian beech forests. For. Ecosyst. 6:1–15. Doi: https://doi.org/10.1186/s40663-019-0180-4
Chen D, Huang X, Zhang S, Sun X. 2017. Biomass modeling of larch (Larix spp.) plantations in China based on the mixed model, dummy variable model, and Bayesian hierarchical model. Forests. 8:5–8. Doi: http://dx.doi.org/10.3390/f8080268
de Andrés EG. 2019. Interactions between climate and nutrient cycles on forest response to global change: The role of mixed forests. Forests, 10: –26. Doi: https://doi.org/10.3390/f10080609
De Schepper V, Steppe K. 2010. Development and verification of a water and sugar transport model using measured stem diameter variations. J. Exp. Bot. 61:2083–2099. Doi: http://dx.doi.org/10.1093/jxb/erq018
Ekoungoulou R, Niu S, Joël Loumeto J, Averti Ifo S, Enock Bocko Y, Mikieleko F, Eusebe DM, Senou H, Liu X. 2015. Evaluating the Carbon Stock in Above-and Below- Ground Biomass in a Moist Central African Forest " Evaluating the Carbon Stock in Above-and Below-Ground Biomass in a Moist Central African. Appl. Ecol. Environ. Sci. 3:51–59.
Ghasemi A, Zahediasl S. 2012. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 10:486–489. Doi: http://dx.doi.org/10.5812/ijem.3505
González-García M, Hevia A, Majada J, Barrio-Anta M. 2013. Above-ground biomass estimation at tree and stand level forshort rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in Northwest Spain. Biomass and Bioenergy. 54:147–157. Doi: http://dx.doi.org/10.1016/j.biombioe.2013.03.019
Guendehou GHS, Lehtonen A, Moudachirou M, Mäkipää R, Sinsin B. 2012. Stem biomass and volume models of selected tropical tree species in West Africa. South. For. 74:77–88. Doi: http://dx.doi.org/10.2989/20702620.2012.701432
Hakamada R, Hubbard RM, Ferraz S, Stape JL. 2017. Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. South. For. a J. For. Sci. 79:251–257. Doi: https://doi.org/10.2989/20702620.2016.1256041
Han SH, Park BB. 2020. Comparison of allometric equation and destructive measurement of carbon storage of naturally regenerated understory in a Pinus rigida plantation in South Korea. Forests. 11:1–11. Doi: https://doi.org/10.3390/f11040425
He H, Zhang C, Zhao X, Fousseni F, Wang J, Dai H, Yang S, Zuo Q. 2018. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS One. 13:1–16. Doi: http://dx.doi.org/10.1371/journal.pone.0186226
Hernández-Ramos J, De los Santos-Posadas HM, Valdez-Lazalde JR, Tamarit-Urias JC, Ángeles-Pérez G, Hernández-Ramos A, Peduzzi A, Carrero O. 2017. Biomasa aérea y factores de expansión en plantaciones forestales comerciales de Eucalyptus urophylla S. T. Blake. Agrociencia. 51:921–938.
Issa S, Dahy B, Ksiksi T, Saleous N. 2020. A review of terrestrial carbon assessment methods using geo-spatial technologies with emphasis on arid lands. Remote Sens. 12:1–32. Doi: https://doi.org/10.3390/rs12122008
Karyati, Widiati KY, Karmini, Mulyadi R. 2021. The allometric relationships for estimating above-ground biomass and carbon stock in an abandoned traditional garden in east kalimantan, indonesia. Biodiversitas. 22:751–762. Doi: http://dx.doi.org/10.13057/biodiv/d220228
Kebede B, Soromessa T. 2018. Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosyst. Heal. Sustain. 4:1–12. Doi: https://doi.org/10.1080/20964129.2018.1433951
Ketterings QM, Coe R, Van Noordwijk M, Ambagau’ Y, Palm CA. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manage. 146:199–209. Doi: http://dx.doi.org/10.1016/S0378-1127(00)00460-6
Kim C, Baek G, Yoo BO, Jung SY, Lee KS, An KW. 2019. Comparison of allometric equations and biomass expansion factors for six evergreen broad-leaved trees in subtropical forests in southern Korea. J. Sustain. For. 38:199–212. Doi: https://doi.org/10.1080/10549811.2018.1528157
Kocurek M, Kornas A, Wierzchnicki R, Lüttge U, Miszalski Z. 2020. Importance of stem photosynthesis in plant carbon allocation of Clusia minor. Trees - Struct. Funct. 34:1009–1020. Doi: https://link.springer.com/article/10.1007/s00468-020-01977-w
Kora SH, Guendehou GS, Goussanou CA, Assogbadjo AE, Sinsin B. 2019. Allometric equations from a non-destructive approach for biomass prediction in natural forest and plantation in West Africa. South. For. 81:111–122. Doi: https://doi.org/10.2989/20702620.2018.1512795
Krejza J, Sv?tlík J, Bedná? P. 2017. Allometric relationship and biomass expansion factors (BEFs) for above- and below-ground biomass prediction and stem volume estimation for ash (Fraxinus excelsior L.) and oak (Quercus robur L.). Trees - Struct. Funct. 31:1303–1316. Doi: https://doi.org/10.1007/s00468-017-1549-z
Krisnawati H, Agency D, Agency D, Imanuddin R, Agency D. 2012. Monograph allometric models for estimating tree biomass at various ecosystems types in Indonesia; Ministry of Forestry: Bogor. ISBN 9789793145907.
Krisnawati H, Imanuddin R, Adinugroho WC. Monograf allometric models for estimating tree biomass at various forest ecosystems types in Indonesia; Ministry of Forestry, Center for research and development of conservation and rehabilitation: Bogor, 2012; ISBN 9789793145907.
Lisboa SN, Guedes BS, Ribeiro N, Sitoe A. 2018. Biomass allometric equation and expansion factor for a mountain moist evergreen forest in Mozambique. Carbon Balance Manag. 13:1–16. Doi: https://doi.org/10.1186/s13021-018-0111-7
Lu K, Bi H, Watt D, Strandgard M, Li Y. 2018. Reconstructing the size of individual trees using log data from cut-to-length harvesters in Pinus radiata plantations: a case study in NSW, Australia. J. For. Res. 29:13–33. Doi: http://dx.doi.org/10.1007/s11676-017-0517-1
Lumbres RIC, Lee YJ, Yun CW, Koo CD, Kim SB, Son YM, Lee KH, Won HK, Jung SC, Seo YO. 2015. DBH-height modeling and validation for Acacia mangium and Eucalyptus pellita in Korintiga Hutani Plantation , Kalimantan , Indonesia. Forest Sci. Technol. 11:119–125.
Mahmood H, Siddique MRH, Abdullah SMR, Islam SMZ, Matieu H, Iqbal MZ, Akhter M. 2020. Semi-destructive method to derive allometric aboveground biomass model for village forest of Bangladesh: Comparison of regional and pan-tropical models. J. Trop. For. Sci. 32:246–256. Doi: http://dx.doi.org/10.26525/jtfs2020.32.3.246
Mishra P, Pandey CM, Singh U. 2019. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 22:67–72. Doi: https://dx.doi.org/10.4103%2Faca.ACA_157_18
Nunes LJR, Meireles CIR, Gomes CJP, Ribeiro NMCA. 2019. Forest management and climate change mitigation: A review on carbon cycle flow models for the sustainability of resources. Sustainability. 11:1–10. Doi: https://doi.org/10.3390/su11195276
Nunes LJR, Meireles CIR, Gomes CJP, Ribeiro NMCA. 2020. Forest contribution to climate change mitigation: Management oriented to carbon capture and storage. Climate. 8:1–20. Doi: https://doi.org/10.3390/cli8020021
Petersson H, Holm S, Ståhl G, Alger D, Fridman J, Lehtonen A, Lundström A, Mäkipää R. 2012. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass - A comparative study. For. Ecol. Manage. 270:78–84. Doi: http://dx.doi.org/10.1016/j.foreco.2012.01.004
Pinkard EA, Beadle CL. 1998. Aboveground biomass partitioning and crown architecture of Eucalyptus nitens following green pruning. Can. J. For. Res., 28:1419–1428. Doi: http://dx.doi.org/10.1139/cjfr-28-9-1419
Reichstein M, Carvalhais N. 2019. Aspects of Forest Biomass in the Earth System: Its Role and Major Unknowns. Surv. Geophys. 40:693–707. Doi: https://doi.org/10.1007/s10712-019-09551-x
Ribeiro SC, Soares CPB, Fehrmann L, Jacovine LAG, von Gadow K. 2015. Aboveground and Belowground Biomass and Carbon Estimates for Clonal Eucalyptus Trees in Southeast Brazil. Rev. Árvore. 39:353–363. Doi: https://doi.org/10.1590/0100-67622015000200015
Sadono R, Wardhana W, Wirabuana PYAP, Idris F. 2020. Productivity evaluation of Eucalyptus urophylla plantation established in dryland ecosystems, East Nusa Tenggara. J. Degrad. Min. L. Manag. 8:2502–2458. Doi: https://doi.org/10.15243/jdmlm.2020.081.2461
Sadono R, Wardhana W, Wirabuana PYAP, Idris F. 2021. Allometric equations for estimating aboveground biomass of Eucalytpus urophylla S.T. Blake in East Nusa Tenggara. J. Trop. For. Manag. 27:24–31. Doi: https://doi.org/10.7226/jtfm.27.1.24
Seo YO, Lee YJ, Lumbres RIC, Pyo JK, Kim RH, Son YM, Lee KH. 2013. Influence of stand age class on biomass expansion factor and allometric equations for Pinus rigida plantations in South Korea. Scand. J. For. Res. 28:566–573. Doi: https://doi.org/10.1080/02827581.2013.786126
Setiahadi R. 2017. How significant is the existence of forest community contribution in GHG emissions reduction? J. Eng. Appl. Sci. 12:4826–4830. Doi: http://dx.doi.org/10.36478/jeasci.2017.4826.4830
Silva PSL e, Paiva HN de, Oliveira VR de, Siqueira PL de OF, Soares EB, Monteiro AL, Tavella LB. 2014. Biomass of tree species as a response to planting density and interspecific competition. Rev. Árvore 2014, 38: 319–329.
Stas SM, Rutishauser E, Chave J, Anten NPR, Laumonier Y. 2017. Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models. For. Ecol. Manage. 389:27–34.
Taeroe A, Nord-Larsen T, Stupak I, Raulund-Rasmussen K. 2015. Allometric Biomass, Biomass Expansion Factor and Wood Density Models for the OP42 Hybrid Poplar in Southern Scandinavia. Bioenergy Res. 8:1332–1343. Doi: http://dx.doi.org/10.1007/s12155-015-9592-3
Teobaldelli M, Somogyi Z, Migliavacca M, Usoltsev VA. 2009. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. For. Ecol. Manage. 257:1004–1013. Doi: http://dx.doi.org/10.1016/j.foreco.2008.11.002
Tetemke BA, Birhane E, Rannestad MM, Eid T. 2019. Allometric models for predicting aboveground biomass of trees in the dry afromontane forests of Northern Ethiopia. Forests. 10:1–15. Doi: https://doi.org/10.3390/f10121114
Viera M, Rodríguez-Soalleiro R. 2019. A Complete Assessment of Carbon Stocks in Above and Belowground Biomass Components of a Hybrid Eucalyptus Plantation in Southern Brazil. Forests. 10:1–12. Doi: https://doi.org/10.3390/f10070536
Wang Z, Du A, Xu Y, Zhu W, Zhang J. 2019. Factors limiting the growth of eucalyptus and the characteristics of growth and water use under water and fertilizer management in the dry season of Leizhou Peninsula, China. Agronomy, 9, 1–17. Doi: http://dx.doi.org/10.3390/agronomy9100590
Wirabuana PYAP, Sadono R, Jurniarso S. 2019. Fertilization effects on early growth, aboveground biomass, carbon storage, and leaf characteristics of Eucalyptus pellita F.Muell. in South Sumatra. J. Manaj. Hutan Trop. 25:154–163. Doi: https://doi.org/10.7226/jtfm.25.3.154
Wirabuana PYAP, Setiahadi R, Sadono R, Lukito M, Martono DS, Matatula J. 2020. Allometric equations for estimating biomass of community forest tree species in Madiun, Indonesia. Biodiversitas. 21:4291–4300. Doi: https://doi.org/10.13057/biodiv/d210947
Wulandari C, Bintoro A, Rusita, Santoso T, Duryat, Kaskoyo H, Erwin, Budiono P. 2018. Community forestry adoption based on multipurpose tree species diversity towards to sustainable forest management in ICEF of University of Lampung, Indonesia. Biodiversitas. 19:1102–1109. Doi: http://dx.doi.org/10.13057/biodiv/d190344
Xue Y, Yang Z, Wang X, Lin Z, Li D, Su S. 2016. Tree biomass allocation and its model Additivity for Casuarina equisetifolia in a tropical forest of Hainan Island, China. PLoS One. 11:1–20. Doi: https://doi.org/10.1371/journal.pone.0151858
Zhang X, Zhang X, Han H, Shi Z, Yang X. 2019. Biomass accumulation and carbon sequestration in an age-sequence of Mongolian pine plantations in Horqin sandy land, China. Forests. 10:1–18. Doi: http://dx.doi.org/10.3390/f10020197
Zhao H, Li Z, Zhou G, Qiu Z, Wu Z. 2019. Site-specific allometric models for prediction of above-and belowground biomass of subtropical forests in Guangzhou, Southern China. Forests. 10:1–16. Doi: https://doi.org/10.3390/f10100862

Most read articles by the same author(s)