Comparisons of the composition of spider assemblages in three vegetation habitats in Bogor, West Java, Indonesia

##plugins.themes.bootstrap3.article.main##

MAYANDA LIA
AUNU RAUF
DADAN HINDAYANA

Abstract

Abstract. Lia M, Rauf A, Hindayana D. 2021. Comparisons of the composition of spider assemblages in three vegetation habitats in Bogor, West Java, Indonesia. Biodiversitas 23: 244-255. Vegetation structures are known to influence the microclimate and consequently the invertebrate assemblages. This study, therefore, aims to compare the species composition of assemblages of ground- and foliage-dwelling spiders in three vegetation habitats: undisturbed urban forest, oil palm plantation, and cornfield, in Bogor, West Java. To ensure a thorough representation of all spider guilds, spiders were collected using pitfall traps, sweep net, and through a direct search on ground and vegetation from January to July 2016. A total of 2299 individual spiders, representing 28 families and 207 species/morphospecies were collected. The spider species richness, abundance, and diversity were higher in the forest and oil palm plantation, compared to the cornfield. Furthermore, the dominant guild in the forest habitat was orb weavers, while the oil palm and corn habitats were dominated by ground runners. The non-metric multidimensional scaling exhibited that the composition of spider assemblages varied among the three vegetation habitats, with spider assemblages in forest habitat associated with higher RH, while the corn habitat was correlated with high light intensity and air temperature. The indicator species analysis revealed that Tetragnathidae has high potential as indicators of the dense, complex vegetation structure of the forest, while Lycosidae is indicators of the more open vegetation of oil palm plantation and cornfield habitats.

##plugins.themes.bootstrap3.article.details##

References
Ashton-Butt A, Aryawan AAK, Hood ASC, Naim M, Purnomo D, Suhardi, Wahyuningsih R, Willcock S, Poppy GM, Caliman JP, Turner EC, Foster WA, Peh KS-H and Snaddon JL. 2018. Understory vegetation in oil palm plantations benefits soil biodiversity and decomposition rates. Fron. For Glob Change 1:10. DOI: 10.3389/ffgc.2018.00010
Avila AC, Stenert A, Rodrigues ENL, Maltchik L. 2017. Habitat structure determines spider diversity in highland ponds. Ecol Res 32: 359-367. https://doi.org/10.1007/s11284-017-1442-7.
Baldissera R, de Quadros SO, Galeti G, Rodrigues ENL, Lazzarotto LMV, de Oliveira AD. 2020. Spider assemblage structure and functional diversity patterns in clear-cut, logged, and undisturbed areas in a large Atlantic forest remnant. Can J For Res 50(1):1-7. http://dx.doi.org/10.1139/cjfr-2019-0302.
Barriga JC, Lassaletta L, Moreno AG. 2010. Ground-living spider asemblages from Mediterranian habitats under different management conditions. Journal of Arachnology 38: 258-269. https://doi.org/10.1636/P09-40.1.
Barrion AT, Litsinger JA. Riceland spiders of South and Southeast Asia. CAB International, Wallingford.
Benitez-Malvido J, Martinez-Falcon AP, Duran-Barron CG. 2020. Diversity metrics of spider communities associated with an understory plant in tropical forest fragments. J Trop Ecol 36(2):47-55. doi:1017/S026646741900035X.
Bizuet-Flores MY, Jimenez-Jimenez ML, Zavala-Hurtado A, Corcuera P. 2015. Diversity patterns of ground dwelling spiders (Arachnida: Araneae) in five prevailing plant communities of the Cuatro Cienegas Basin, Coahuila, Mexico. Refista Mexicana de Biodiversidad 86: 153-163. http://dx.doi.org/10.7550/rmb.45444.
Bonaldo AB, Dias SC. 2010. A structured inventory of spiders (Arachnida, Araneae) in natural and artificial forest gaps at Porto urucu, Western Brazilian Amazonia. Acta Amazonica 40(2): 357-372. https://doi.org/10.1590/S0044-59672010000200014.
Buchholz S, Schroder M. 2013. Diversity and ecology of spider assemblages of a Mediterranian wetland complex. Journal of Arachnology 41: 364-373. https://doi.org/10.1636/P13-26.1.
Cardoso P, Henriques SS, Gaspar C, Crespo LC, Carvalho R, Schmidt JB, Sousa P, Szuts T. 2007. Species richness and composition assessment of spiders in a Mediteranian scrubland. J Insect Conserv 13(45). https://doi.org/10.1007/s10841-0079116-3
Cardoso P, Pekar S, Jocque R, Coddington JA. 2011. Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6(6): e21710. https://doi.org/10.1371/journal.pone.0021710
Coddington JA, Young LH, Coyle EA. 1996. Estimating spider species richness in a southern Appalachian cove hardwood forest. Journal of Arachnology 24: 111-128.
Colwell RK. 2013. Estimates S: Statistical estimation of species richness and shared species from samples. Version 9. – User's Guide and application. http://purl.oclc.org/estimates.
Cunha ER, Thomaz SM, Mormul RP, Cafofo EG, Bonaldo AB. 2012. Macrophyte structural complexity influences spider assemblage attributes in wetlands. Wetlands 32: 369-377. https://doi.org/10.1007/s13157-012-0272-1.
Deeleman-Reinhold CL. 2001. Forest Spiders of South East Asia: with a Revision of the Sac and Ground Spiders (Araneae: Clubionidae, Corinnidae, Liocranidae, Gnaphosidae, Prodidomidae, and Trochanterriidae). Brill, Leiden.
Dzulhelmi MN, Suriyanti S, Badiozaman S, Madihah H, Nur-Syahirah M, Farah NR, Faszly R. 2019. Field survey of foliage-dwelling spiders (Arachnida, Araneae) in Peninsular Malaysia. Indon J Entomol 16(3): 129-137.DOI: 10.5994/jei.16.3.129.
Foelix RF. 2011. Biology of Spider, Third edition. Oxford University Press, New York.
Fourie R, Haddad CR, Dippenaar-Schoeman AS, Grobler A. 2013. Ecology of the plant-dwelling spiders (Arachnida: Araneae) of the Erfenis Dam Nature Reserve, South Africa. Koedoe 55(1), Art. #1113, 9 pages.http://dx.doi.org/10.4102/koedoe.v55i1.1113-1.
Galle R, Schweger S. 2014. Habitat and landscape attributes influencing spider assemblages at lowland forest river valey (Hungary). Northwestern Journal of Zoology 10(1): 36-41.
Gomez JE, Lohmiller J, Joern A. 2016. Importance of vegetation structure to the assembly of an aerial web-building spider community in North American open grassland. Journal of Arachnology 44: 28-35. https://doi.org/10.1636/P14-58.1.
Gutierrez DR. 2020. Checklist of spiders (Arachnida: Araneae) of Indonesia and New Guinea. https://www.academia.edu/42103319/Checklist_of_Spiders_Arachnida_Araneae_of_Indonesia_and_New_Guinea_2020.
Haddad CR, Butler VP. 2018. Ground-dwelling spider assemblages in contrasting habitats in the central South African Grassland Biome. Koedoe 60(1): a1482. https://doi.org/10.4102/koedoe.v60i1.1482.
Haddad CR, Honiball AS, Dippenaar-Schoeman AS, Slotow R, van Rensburg BJ. 2009. Spiders as potential indicators of elephant-induced habitat changes in endemic sand forest, Maputaland, South Africa. Afr J Ecol 48: 446-460. https://doi.org/10.1111/J.1365-2028.2009.01133.X
Hammer O, Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9.
Hood ASC, Advento AD, Stone J, Fayle TM, Fairnie ALM, Waters HS, Foster WA, Snaddon JL, Sudarto Ps, Caliman JP, Naim M, Turner EC. 2020. Removing understory vegetation in oil palm agroforestry reduces ground-foraging ant abundance but not species richness. Basic and Applied Ecology 48: 26-36. https://doi.org/10.1016/j.baae.2020.07.002.
Hore U, Uniyal VP. 2008. Diversity and composition of spider assemblages in five vegetation types of the Terai Conservation Area, India. The Journal of Arachnology 36: 251-258. https://doi.org/10.1636/ct07-53.1.
Horvath R, Elek Z, Lovei GL. 2014. Compositional changes in spider (Araneae) assemblages along an urbanization gradient near a Danish town. Bulletin of Insectology 67(2): 255-264.
Kaltsas D, Panayiotou E, Kougioumoutzis K, Chatzaki M. 2019. Overgrazed shrublands support high taxonomic, functional and temporal diversity of Mediterranian ground spider assemblages. Ecological Indicators 103: 599-609. https://doi.org/10.1016/J.ECOLIND.2019.04.024.
Khan AA, Rather AQ. 2012. Diversity and foraging behavior of spider (Arachnida: Araneae) in the temperate maize ecosystem of Kashmir. Journal of Biological Control 26(2): 179-189. https://doi.org/10.18311/JBC%2F2012%2F3516.
Ko FK, Wan LY. 2018. Engineering properties of spider silk. In: Bunsell A (ed.). Handbook of Properties of Textile and Technical Fibres. Woodhead Publishing, Cambridge.
Koneri R, Nangoy M. 2016. Diversity and species composition of spiders (Arachnida: Araneae) at different habitats in Mount Tumpa Forest Park, North Sulawesi, Indonesia. .J Bio Env Sci 8(5): 52-61.
Krashevska V, Klarner B, Widyastuti R, Maraun M, Scheu S. 2015. Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biology and Fertility of Soils 51: 697. http://dx.doi.org/10.1007/s00374-015-1021-4
Legendre P. 2013. Indicator species: Computation. Encyclopedia of Biodiversity volume 4: 264-268. http://dx.doi.org/10.1016/B978-0-12-384719-5.00430-5
Lo-Man-Hung NF, Marichal R, Candiani DF, Carvalho LS, Indicatti RP, Bonaldo AB, Cobo DHR, Feijoo AM, Tselouiko S, Praxedes C, Brown G, Velasquez E, Decaens T, Oszwald J, Martins M, Lavelle P. 2011. Impact of different land management on soil spiders (Arachnida: Araneae) in two Amazonians areas in Brazil and Colombia. Journal of Arahnology 39(2): 296-302. https://doi.org/10.1636/CP10-89.1
Luke SH, Advento AD, Aryawan AAK, Adhy DN, Ashton-Butt A, Barclay H, Dewi JP, Drewer J, Dumbrell AJ, Edi, Eycott AE, Harianja MF, Hinsch JK, Hood ASC, Kurniawan C, Kurz DJ, Mann DJ, Matthews Nicholass KJ, Naim M, Pashkevich MD, Prescott GW, Ps S, Pujianto, Purnomo D, Purwoko RR, Putra S,Rambe TDS, Soeprapto, Spear DM, Suhardi, Tan DJX, Tao H-H, Tarigan RS, Wahyuningsih R, Waters HS, Widodo RH, Whendy, Woodham CR, Caliman J-P, Slade EM, Snaddon JL, Foster WA and Turner EC. 2020. Managing oil palm plantations more sustainably: Large-Scale experiments within the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme. Front For Glob Change 2:75. doi: 10.3389/ffgc.2019.00075
Mammola S, Michalik P, Hebets EA, Isala M. 2017. Record breaking achievements by spiders and the scientists who study them. Peer J 5, e3972. https://doi.org/10.7717/peerj.3972.
McCune B, Grace JB. 2002.Analysis of Ecological Communities. MJM Software Design, Gleneden Beach, Oregon.
McCune M, Mefford MJ. 2016. PC-ORD. Multivariate Analysis of Ecological Data. Version 7. MjM Software Design. Gleneden Beach, Oregon..
Michalko R, Pekar S, Dul’a M, Entling MH. 2019. Global patterns in the biocontrol efficacy of spiders: A meta-analysis. Global Ecol Biogeogr 28: 1366-1378. https://doi.org/10.1111/geb.12927
Milano F, Blick T, Cardoso P, Chatzaki M, Fukushima CS, Gajdo P, Gibbons AT, Henriques S, Macías-Hernandez N, Mammola S, Nentwig W, Nolan M, Petillon J, Polchaninova N, Rezac M, Sandstrom J, Smith H, Wisniewski K, Isaia
M. 2021.Spider conservation in Europe: a review. Biol Conservation 256(2021)109020.. https://doi.org/10.1016/j.biocon.2021.109020.
Moorhead LC, Philpott SM. 2013. Richness and composition of spiders in urban green spaces in Toledo, Ohio. Journal of Arachnology 41: 356-363. https://doi.org/10.1636/p12-44
Nardi D, Marini L. 2021. Role of abandoned grasslands in the conservation of spider communities across heterogeneous mountain landscapes. Agric Ecosys Env 319 (2021) 107526. https://doi.org/10.1016/j.agee.2021.107526.
Nyffeler M, Birkhofer K. 2017. An estimated 400-800 million tons of prey are annually killed by the global spider community. Sci Nat 104: 30. https://doi.org/10.1007/s00114-017-1440-1
Nogueira ADA, Pinto-da-Rocha R. 2016. The effects of habitat size and quality on the orb-weaving spider guild (Arachnia: Araneae) in Atlantic Forest fragmented landscape. Journal of Arachnology 44: 36-45.
Ossamy S, Elbanna Sm, Orabi GM, Semida FM. 2016. Assessing the potential role of spiders as bioindicators in Ashtoum El Gamil Natural Protected Area, Port Said, Egypt. Indian Journal of Arachnology 5(1-2): 100-112.
Pashkevich MD, Aryawan AAK, Luke SH, Duperre N, Waters HS, Caliman JP, Naim M, Turner EC. 2021. Assessing the effects of oil palm replanting on arthropod biodiversity. J Appl Ecol. 58:27–43. https://doi.org/10.1111/1365-2664.13749
Peck JE. 2016, Multivariate Analysis for Ecologists: Ste-by-Step. Second edition. MJM Software Design, Gleneden Beach, Oregon.
Peres MCL, Benati KR, de Andrade ARS, Guimaraes MVA, da Silva Melo T, Brescovit AD, Delabie JHC. 2014. Tree-fall gap effects on spider (Araneae) assemblages in an Atlantic forest landscape in Northeastern Brazil. Open Journal of Animal Sciences 4: 118-133. http://dx.doi.org/10.4236/ojas.2014.43016
Pineda SS, Chaumeil P, Kunert A, Kaas Q, Thang MWC, Le L, Nuhn M, Herzig V, Saez NJ, Cristofori-Armstrong B, Anangi R, Senff S, Gorse D, King GP. 2018. ArachnoServer 3.0: an online resource fo automated discovery, analysis and annotation of spider toxins. Bioinformatics 34(6): 1074-1076. https://doi.org/10.1093/bioinformatics/btx661
Podgaiski LR, Rodrigues RR. 2016. Spider community responds to litter complexity: insights from a small-scale experiment in an exotic pine stand. Iheringia,Serie Zoologica 107: e2017007. https://doi.org/10.1590/1678-4766e2017007
Potapov AM, Duperre N, Jochum M, Dreczko K, Klarner B, Barnes AD, Krashevska V, Rembold K, Kreft H, Brose U, Widyastuti R, Harms D, Scheu S. 2020. Functional losses in ground spider communities due to habitat structure degradation under tropical land-use change. Ecology 101(3):e02957. https://doi.org/10.1002/ecy.2957
Prieto-Benitez S, Mendez M. 2011. Effects of land management on the abundance and richness of spiders (Araneae): a meta-analysis. Biol Conservation 144: 683-691. https://doi.org/10.1016/J.BIOCON.2010.11.024.
Riciluca KCT, Sayegh RSR, Melo RL, Silva PL. 2012. Rondonin an antifungal peptide from spider (Acanthoscurria rondoniaew) haemolymph. Results in Immunology 2: 66-71. https://doi.org/10.1016/j.rinim.2012.03.001
Rodrigues ENL, Mendoca Jr MS, Costa-Schmidt LE.2014. Spider diversity responds strongly to edge effects but weakly to vegetation structure in riparian forests of Southern Brazil. Arthropod-Plant Intermed 8: 123-133. https://doi.org/10.1007/s11829-014-9294-3.
Rodrigues ENL, Rodrigues PES, Mendoca Jr MDS. 2016. Spider species composition in the three-shrub strata of riparian forests and its microhabitats in southern Brazil. Zoologia 33(3): e20150102. DOI: 10.1590/S1984-4689zool-20150102
Romero M, Wollni M, Rudolf K, Asnawi R, Irawan B. 2019. Promoting biodiversity enrichment in smallholder oil palm monocultures-Experimental evidence from Indonesia. World Development 124. DOI: 10.1016/j.worlddev.2019.104638
Rubio GD. 2016. Using a jumping spider fauna inventory (Araneae: Salticidae) as an indicator of their taxonomic diversity in Misiones, Argentina. Rev Biol Trop 64(2): 875-883. DOI: 10.15517/rbt.v64i2.19722.
Rubio GD, Corronca JA, Damborsky MP. 2008. Do spider diversity and assemblages change in different contiguous habitats? A case study in the protected habitats of the humid Chaco ecoregion, Northeast Argentina, Environ Entomol 37(2): 419-430. https://doi.org/10.1093/ee/37.2.419.
Solin HA, Husni H, Jauharlina J. 2021. Diversity and abundance of predatory arthropods on immature and mature oil palm (Elaeis guineensis ) plantations. Pak J Biol Sci 23: 25.34. https://doi.org/10.3923/pjbs.2021.25.34.
Spear DM, Foster WA, Advento AD, Naim M, Caliman JP, Luke SH, Snaddon JL, Sudharto Ps, Turner EC. 2018. Simplifying understory complexity in oil palm plantations is associated with a reduction in the density of a cleptoparasitic spider, Argyrodes miniaceus (Araneae: Theridiidae), in host (Araneae: Nephilinae) webs. Ecol Evol: 1-9. DOI: 10.1002/ece3.3772
Spears LR, MacMahon JA. 2012. An experimental study of spiders in a shrub-steppe ecosystem: the effects of prey availability and shrub architecture. Journal of Arachnology 40(2): 218-227. https://doi.org/10.1636/P11-87.1
Stokmane M, Spungis V. 2016. The influence of vegetation structure on spider species richness, diversity and community organization in the Apsuciems calcareous fen, Latvia. Animal Biodiversity and Conservation 39: 221-236.
Suana IW, Solihin DD, Buchori D, Manuwoto S, Triwidodo H, Schulze CH. 2009. Functional groups of spiders in cultivated landscape dominated by paddy fields in West Java, Indonesia. HAYATI J Biosci 16(1): 1-8. https://doi.org/10.4308/hjb.16.1.1.
Uetz GW. 1979. The influence of variation in litter habitats on spider communities. Oecologia 40: 29-42. https://doi.org/10.1007/BF00388808.
World Spider Catalog. 2021. World Spider Catalog. Version 22.5. Natural History Museum Bern. http://wsc.nmbe.ch, doi: 10.24436/2

Most read articles by the same author(s)