Bioprospecting of cow's ruminal microbiota from a slaughterhouse in Ambarawa, Central Java, Indonesia

##plugins.themes.bootstrap3.article.main##

RETNO MURWANI
MADA TRIANDALA SIBERO
POLA RISDA ASWITA SILITONGA
AMBARIYANTO AMBARIYANTO

Abstract

Abstract. Murwani R, Sibero MT, Silitonga PRA, Ambariyanto A. 2021. Bioprospecting of cow's ruminal microbiota from a slaughterhouse in Ambarawa, Central Java, Indonesia. Biodiversitas 22: 5030-5038. Ruminal microorganisms play essential roles in maintaining ruminant health. However, most studies focused only on ruminal lactic acid bacteria (LAB), although other ruminal microorganisms might have biological properties for biotechnological purposes. Therefore, the current study aimed to isolate ruminal bacteria (LAB and non-LAB) and fungi from ruminal material and conducted a bioprospecting study to understand their ability to produce antibacterial compounds and polysaccharide-degrading enzymes. The ruminal bacteria were isolated on MRS and ISP4 agar, while PDA was used to isolate the different fungi. The antibacterial property was tested against multidrug-resistant Escherichia coli and Salmonella enterica ser. Typhi. The ability to produce agarase, alginate-lyase, and carrageenase was screened. Prospective isolates were identified using DNA barcoding approach. Twelve bacteria were isolated using MRS agar, six from ISP4 agar, and four fungi from PDA. Among twelve bacteria from MRS agar, eleven were considered LAB, which consisted of Lactobacillus plantarum and Pediococcus acidilactici. Several classes of bacteria such as actinobacteria, firmicutes, ?-proteobacteria, and ?-proteobacteria were isolated during this study. In addition, three fungal classes, namely Saccharomycetes, Eurotiomycetes, and Mucoromycetes were also isolated. All bacteria from MRS agar were suggested to have potential compounds with antimicrobial activity, while all ruminal fungi exhibited potential sources of polysaccharide-degrading enzymes.

##plugins.themes.bootstrap3.article.details##

References
Abrão FO, Duarte ER, Freitas CES, Vieira EA, Geraseev LC, da Silva-Hughes AF, Rosa CA, Rodrigues NM. 2014. Characterization of fungi from ruminal fluid of beef cattle with different ages and raised in tropical lignified pastures. Curr Microbiol 69(5): 649–659. DOI: https://doi.org/10.1007/s00284-014-0633-5
Alhaag H, Yuan X, Mala A, Bai J, Shao T. 2019. Fermentation characteristics of Lactobacillus plantarum and Pediococcus species isolated from sweet sorghum silage and their application as silage inoculants. App Sci 9(6). DOI: https://doi.org/10.3390/app9061247
Ayuningrum D, Sibero MT, Kristiana R, Asagabaldan MA, Wuisan ZG, Trianto A, Radjasa OK, Sabdono A, Schaberle TF. 2019. Tunicate-associated bacteria show a great potential for the discovery of antimicrobial compounds. PLOS One 14(3). DOI: https://doi.org/10.1371/journal.pone.0213797
Ayuningtyas EP, Sibero MT, Hutapea NEB, Frederick EH, Murwani R, Zilda DS, Wijayanti DP, Sabdono A, Pringgenies D, Radjasa OK. 2021. Screening of extracellular enzyme from Phaeophyceae-associated fungi. IOP Conf Ser: EES 750(1): 012005. DOI: https://doi.org/10.1088/1755-1315/750/1/012005
Balch DA, Rwoland SJ. 1957. Volatile fatty acids and lactic acid in the rumen of dairy cows receiving a variety of diets. The British J Nutri 11(3): 288–298.
Batt CA. 2014. Alcaligenes. Encyclopedia of Food Microbiology: Second Edition. 1: 38–41. DOI: https://doi.org/10.1016/B978-0-12-384730-0.00006-9
Benoit I, Malavazi I, Goldman GH, Baker SE, Vries RP. 2013. Aspergillus: genomics of a cosmopolitan fungus. In Horwitz BA, Mukherjee PK, Mukherjee M, Kubicek CP. Genomics of Soil- and Plant-Associated Fungi. Springer. DOI: https://doi.org/10.1007/978-3-642-39339-6
Blackwell M, Spatafora JW. 2004. Fungi and Their Allies. In Mueller GM, Bills GF, Foster MS, eds. Biodiversity of Fungi: Inventory and Monitoring Methods. Elsevier Academic Press, Burlington. DOI: https://doi.org/10.1016/B978-012509551-8/50004-0
Castillo-González AR, Burrola-Barraza ME, Domínguez-Viveros J, Chávez-Martínez A. 2014. Rumen microorganisms and fermentation. Arch Med Vet 46: 349–361. DOI: http://dx.doi.org/10.4067/S0301-732X2014000300003
Cobos MA, de Coss AL, Ramirez ND, Gonzalez SS, Cerrato FR. 2011. Pediococcus acidilactici isolated from the rumen of lambs with rumen acidosis, 16S rRNA identification and sensibility to monensin and lasalocid. Res Vete Sci 90(1): 26–30.DOI: https://doi.org/10.1016/j.rvsc.2010.05.006
Comlekcioglu U, Ozkose E, Yazdic FC, Akyol I, Ekinci MS. 2010. Polysaccharidase and glycosidase production of avicel grown rumen fungus Orpinomyces sp. GMLF5. Act Biol Hungarica 61(3): 333–343. DOI: https://doi.org/10.1556/ABiol.61.2010.3.9
Dai X, Tian Y, Li J, Su X, Wang X, Zhao S, Liu L, Luo Y, Liu D, Zheng H, Wang J, Dong Z, Hu S, Huang L. 2015. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl Env Microbiol 81(4): 1375–1386. DOI: https://doi.org/10.1128/AEM.03682-14
Doyle N, Mbandlwa P, Kelly WJ, Attwood G, Li Y, Ross RP, Stanton C, Leahy S. 2019. Use of lactic acid bacteria to reduce methane production in ruminants, a critical review. Frontiers Microbiol 10. DOI: https://doi.org/10.3389/fmicb.2019.02207
Ejtahed HS, Angoorani P, Soroush AR, Atlasi R, Hasani-Ranjbar S, Mortazavian AM, Larijani B. 2019. Probiotics supplementation for the obesity management: a systematic review of animal studies and clinical trials. J Funct Foods 52: 228–242. DOI: https://doi.org/10.1016/j.jff.2018.10.039
Fouts DE, Szpakowski S, Purushe J, Torralba M, Waterman RC, MacNeil MD, Alexander LJ, Nelson KE. 2012. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE 7(11). DOI: https://doi.org/10.1371/journal.pone.0048289
Górska A, Przystupski D, Niemczura MJ, Kulbacka J. 2019. Probiotic bacteria: a promising tool in cancer prevention and therapy. Cur Microbiol 76(8): 939–949. DOI: https://doi.org/10.1007/s00284-019-01679-8
Guo L, Yao D, Li D, Lin Y, Bureenok S, Ni K, Yang F. 2020. Effects of lactic acid bacteria isolated from rumen fluid and feces of dairy cows on fermentation quality, microbial community, and in vitro digestibility of alfalfa silage. Front Microbiol 10: 1–11. DOI: https://doi.org/10.3389/fmicb.2019.02998
Gurpilhares DB, Cinelli LP, Simas NK, Pessoa A, Sette LD. 2019. Marine prebiotics: polysaccharides and oligosaccharides obtained by using microbial enzymes. Food Chem 280: 175–186. DOI: https://doi.org/10.1016/j.foodchem.2018.12.023
Han H, Ogata Y, Yamamoto Y, Nagao S, Nishino N. 2014. Identification of lactic acid bacteria in the rumen and feces of dairy cows fed total mixed ration silage to assess the survival of silage bacteria in the gut. J Dairy Sci 97(9): 5754–5762. DOI: https://doi.org/10.3168/jds.2014-7968
Herdian H, Istiqomah L, Damayanti E, Suryani AE, Anggraeni AS, Rosyada N, Susilowati A. 2018. Isolation of cellulolytic lactic-acid bacteria from Mentok (Anas moschata) gastro-intestinal tract. Trop Animal Sci J 41(3): 200–206. DOI: https://doi.org/10.5398/tasj.2018.41.3.200.
Hu B, Gong Q, Wang Y, Ma Y, Li J, Yu W. 2006. Prebiotic effect of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe 12: 260-266. DOI: 10.1016/j.anaerobe.2006.07.005
Hutapea NEB, Sibero MT, Ayuningtyas EP, Frederick EH, Wijayanti DP, Sabdono A, Pringgenies D, Radjasa OK, Zilda, DS, Murwani, R. 2021. Seaweed-associated fungi from Sepanjang Beach, GunungKidul, Yogyakarta as potential source of marine polysaccharides-degrading enzymes. IOP Conf Ser: EES 750(1): 012007. DOI: https://doi.org/10.1088/1755-1315/750/1/012007
Jami E, Israel A, Kotser A, Mizrahi I. 2013. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 7(6): 1069–1079. DOI: https://doi.org/10.1038/ismej.2013.2
Jannah SN, Saraswati TR, Handayani D, Pujiyanto S. 2018. Antibacterial activity of lactic acid bacteria isolated from gastrointestinal tract of "ayam kampung" chicken against food pathogens. J Physics: Conf Ser 1025(1). DOI: https://doi.org/10.1088/1742-6596/1025/1/012082
Jose VL, More RP, Appoothy T, Arun AS. 2017. In depth analysis of rumen microbial and carbohydrate-active enzymes profile in Indian crossbred cattle. Systematic Appl Microbiol 40(3): 160–170. DOI: https://doi.org/10.1016/j.syapm.2017.02.003
Jutur PP, Nesamma AA, Shaikh KM. 2016. Algae-derived marine oligosaccharides and their biological applications. Front Mar Sci 3: 1–5. DOI: https://doi.org/10.3389/fmars.2016.00083
Kharel MK, Shepherd MD, Nybo SE, Smith ML, Bosserman MA, Rohr J. 2010. Isolation of Streptomyces species from soil. Curr Protocols Microbiol 19: 1–5. DOI: https://doi.org/10.1002/9780471729259.mc10e04s19
Kocsis T, Molnár B, Németh D, Hegyi P, Szakács Z, Bálint A, Garami A, Soós A, Márta K, Solymár M. 2020. Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: a meta-analysis of randomized clinical trials. Sci Rep 10(1): 1–14. DOI: https://doi.org/10.1038/s41598-020-68440-1
Ko?uchová M, Lehotová V, Šípková A, Piecková E, Valík L. 2016. Biodiversity evaluation of Geotrichum candidum link. Is arthrosporic nucleus number in Geotrichum candidum related to the fungus biodiversity? Scientia Agriculturae Bohemica 47(4): 181–186. DOI: https://doi.org/10.1515/sab-2016-0026
Li F, Guan LL. 2017. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl Environ Microbiol 83(9): 1–16. DOI: https://doi.org/10.1128/AEM.00061-17
Liu J, Yang S, Li X, Yan Q, Reaney MJT, Jiang Z. 2019. ALginate oligosaccharides: production, biological activities, and potential applications. Compre Rev Food Sci Food Safety 18: 1859-1881. DOI: 10.1111/1541-4337.12494
Mano MCR, Numa IAN, da Silva JB, Paulino BN, Pessoa MG, Pastore GM. 2017. Oligosaccharide biotechnology?: an approach of prebiotic revolution on the industry. Appl Microbiol Biotech 102(1): 17–37.
Matthews C, Crispie F, Lewis E., Reid M, O'Toole PW, Cotter PD. 2019. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 10(2): 115–132. DOI: https://doi.org/10.1080/19490976.2018.1505176
Mezaini A, Chihib NE, Bouras DA, Nedjar-Arroume N, Hornez JP. 2009. Antibacterial activity of some lactic acid bacteria isolated from an algerian dairy product. J Environ Pub Health. DOI: https://doi.org/10.1155/2009/678495
Monika, Savitri, Kumar V, Kumari A, Angmo K, Bhalla TC. 2017. Isolation and characterization of lactic acid bacteria from traditional pickles of Himachal Pradesh, India. J Food Sci Technol 54(7): 1945–1952. DOI: https://doi.org/10.1007/s13197-017-2629-1
Muhsin TM, Salih TH. 2001. Exocellular enzyme activity of dermatophytes and other fungi isolated from ruminants in Southern Iraq. Mycopathologia 150(2): 49–52. DOI: https://doi.org/10.1023/A:1010854322655
Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H. 2012. Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334(1): 1–15. DOI: https://doi.org/10.1111/j.1574-6968.2012.02593.x
Nero LA, Beloti V, Barros MDAF, Ortolani MBT, Tamanini R, Franco, BDGDM. 2006. Comparison of petrifilm aerobic count plates and de Man-Rogosa-Sharpe agar for enumeration of lactic acid bacteria. J Rapid Meth Automation Microbiol 14(3): 249–257. DOI: https://doi.org/10.1111/j.1745-4581.2006.00050.x
Noel SJ, Olijhoek DW, Mclean F, Lovendahl P, Lund P, Hojberg O. 2019. Rumen and fecal microbial community structure of Holstein and Jersey dairy cows as affected by breed, diet, and residual feed intake. Animals 9(498). DOI: https://doi.org/10.3390/ani9080498
Nordgård CT, Rao SV, Draget KI. 2019. The potential of marine oligosaccharides in pharmacy. Bioact Carbohydr Diet Fibre 18: 1-4. DOI: https://doi.org/10.1016/j.bcdf.2019.100178
Nuraida L. 2015. A review: health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Sci Human Wellness 4(2): 47–55. DOIL https://doi.org/10.1016/j.fshw.2015.06.001
O'Hara E, Neves ALA, Song Y, Guan LL. 2020. The role of the gut microbiome in cattle production and health: driver or passenger? Ann Rev Animal Biosci 8: 199–220. DOI: https://doi.org/10.1146/annurev-animal-021419-083952
Oyama LB, Girdwood SE, Cookson AR, Fernandez-Fuentes N, Privé F, Vallin HE, Wilkinson TJ, Golyshin PN, Golyshina OV, Mikut R, Hilpert K, Richards J, Wootton M, Edwards JE, Maresca M, Perrier J, Lundy FT, Luo Y, Zhou M, Hess M, Mantovani HC, Creevey CJ, Huws SA. 2017. The rumen microbiome: an underexplored resource for novel antimicrobial discovery. Npj Biofilms Microbiomes 3(1): 1–9. DOI: https://doi.org/10.1038/s41522-017-0042-1
Palevich N, Kelly WJ, Leahy SC, Denman S, Altermann E, Rakonjac J, Attwood GT. 2020. Comparative genomics of rumen Butyrivibrio spp. uncovers a continuum of polysaccharide-degrading capabilities. Appl Environ Microbiol 86(1): 1–19. DOI: https://doi.org/10.1128/AEM.01993-19
Paz HA, Hales KE, Wells JE, Kuehn LA, Freetly HC, Berry ED, Flythe MD, Spangler ML, Fernando SC. 2018. Rumen bacterial community structure impacts feed efficiency in beef cattle. J Animal Sci 96(3): 1045–1058. DOI: https://doi.org/10.1093/jas/skx081
Sabino YNV, de Araujo KC, de Assis FGDV, Moreira SM, Lopes TDS, Mendes TADO, Huws SA, Mantovani HC.. 2020. In silico screening unveil the great potential of ruminal bacteria synthesizing lasso peptides. Front Microbiol 11: 1–17. DOI: https://doi.org/10.3389/fmicb.2020.576738
Setubal JC, Braeuning R. 2007. Similarity search. In Bioinformatics in Tropical Disease Research: A Practical and Case-Study Approach. Access at http://www.ncbi.nlm.nih.gov/books/NBK6831/
Setyawardani T, Sumarmono J. 2019. Isolation and antimicrobial activities of lactic acid bacteria originated from Indonesian local goat's colostrum. Animal Prod 20(3). DOI: https://doi.org/10.20884/1.jap.2018.20.3.731
Sibero MT, Bachtiarini TU, Trianto A, Lupita AH, Sari DP, Igarashi Y, Harunari E, Sharma AR, Radjasa OK, Sabdono A. 2019. Characterization of a yellow pigmented coral-associated bacterium exhibiting antibacterial activity against multidrug resistant (MDR) organism. Egyptian J Aqua Res 45(1): 81–87. DOI: https://doi.org/10.1016/j.ejar.2018.11.007
Sibero, M. T., Sahara, R., Syafiqoh, N., & Tarman, K. (2017). Antibacterial activity of red pigment isolated from coastal endophytic fungi against multidrug resistant bacteria. Biotropia, 24(2), 161–172. https://doi.org/10.11598/btb.2017.24.2.725
Sibero MT, Triningsih D, Radjasa OK, Sabdono A, Trianto A, Priyani N, Prastyo A. 2018. Antimicrobial activity of sponge-associated fungi from Pandang Island, North Sumatera against clinical pathogenic microorganisms. Asian J Microbiol Biotechnol Environ Sci 20(1): 142–149.
Stewart CS. 1992. Lactic Acid Bacteria in the Rumen. In The Lactic Acid Bacteria. DOI: https://doi.org/10.1007/978-1-4615-3522-5_3
Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C. 2009. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Appl Environ Microbiol 75(11): 3484–3491. DOI: https://doi.org/10.1128/AEM.02565-08
Swift CL, Brown JL., Seppälä S, O’Malley MA. 2019. Co-cultivation of the anaerobic fungus Anaeromyces robustus with Methanobacterium bryantii enhances transcription of carbohydrate active enzymes. J Indus Microbiol Biotechnol 46: 1427–1433. DOI: https://doi.org/10.1007/s10295-019-02188-0
Tapio I, Fischer D, Blasco L, Tapio M, Wallace RJ, Bayat AR, Ventto L, Kahala M, Negussie E, Shingfield KJ, Vilkki J. 2017. Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. PLoS ONE 12(7): 1–21. DOI: https://doi.org/10.1371/journal.pone.0180260
Tapio I, Snelling TJ, Strozzi F, Wallace RJ. 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. J Animal Sci Biotechnol 8(1): 1–11. DOI: https://doi.org/10.1186/s40104-017-0141-0
Techo S, Visessanguan W, Vilaichone RK, Tanasupawat S. 2019. Characterization and antibacterial activity against Helicobacter pylori of lactic acid bacteria isolated from Thai fermented rice noodle. Probiot Antimicro Prot 11(1): 92–102. DOI: https://doi.org/10.1007/s12602-018-9385-z
Trianto A, Radjasa OK, Sibero MT, Sabdono A., Armono HD, Igarashi Y. 2020. The effect of culture media on the number and bioactivity of marine invertebrates associated fungi. Biodiversitas 21(1): 407–412. DOI: https://doi.org/10.13057/biodiv/d210147
Wang B, Ma MP, Diao QY, Tu Y. 2019. Saponin-induced shifts in the rumen microbiome and metabolome of young cattle. Front Microbiol 10: 1–14. DOI: https://doi.org/10.3389/fmicb.2019.00356
Wang, X., Li, X., Zhao, C., Hu, P., Chen, H., Liu, Z., Liu, G., & Wang, Z. (2012). Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. Applied and Environmental Microbiology, 78(7), 2386–2392. https://doi.org/10.1128/AEM.07545-11
Wang Y, McAllister TA. 2002. Rumen microbes, enzymes and feed digestion-A review. Asian-Australasian J Animal Sci 15(11): 1659–1676. DOI: https://doi.org/10.5713/ajas.2002.1659
Wijaya AP, Bondar KG, Frederick EH, Igarashi Y, Sibero MT. 2020. Identification of marine bacteria HPP.4A and HPP.T13 and its anticancer activity against P388 murine leukaemia cell. IOP Conf Ser: EES 584(1). DOI: https://doi.org/10.1088/1755-1315/584/1/012005
Wijaya AP, Sibero MT, Zilda DS, Windiyana AN, Wijayanto A, Frederick EH, Murwani R, Wijayanti DP, Sabdono A, Pringgenies D, Radjasa OK. 2021. Preliminary screening of carbohydrase-producing bacteria from Chaetomorpha sp. in Sepanjang Beach, Yogyakarta, Indonesia. IOP Conf Ser: EES 750(1), 012027. DOI: https://doi.org/10.1088/1755-1315/750/1/012027
Yan XT, Yan BY, Ren QM, Dou JJ, Wang WW, Zhang JJ, Zhou JW, Long RJ, Ding LM, Han J, Li ZP, Qiu Q. 2018. Effect of slow-release urea on the composition of ruminal bacteria and fungi communities in yak. Animal Feed Sci Technol, 244: 18–27. DOI: https://doi.org/10.1016/j.anifeedsci.2018.07.016
Yu Y, Shen M, Song Q, Xie J. 2018. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym 183(235): 91–101. DOI: https://doi.org/10.1016/j.carbpol.2017.12.009
Zhu B, Ni F, Xiong Q, Yao Z. 2020. Marine oligosaccharides originated from seaweeds: source, preparation, structure, physiological activity and applications. Critical Rev Food Sci Nutri 61(1): 60–74. DOI: https://doi.org/10.1080/10408398.2020.1716207

Most read articles by the same author(s)

1 2 > >>