Universal primer design for crustacean and bivalve-mollusc authenticity based on cytochrome-b gene

##plugins.themes.bootstrap3.article.main##

DWIYITNO DWIYITNO
STEFAN HOFFMAN
KOEN PARMENTIER
CHRIS VAN KEER

Abstract

Abstract. Dwiyitno D, Hoffman S, Parmentier K, Keer CV. 2021. Universal primer design for crustacean and bivalve-mollusc authenticity based on cytochrome-b gene. Biodiversitas 23: 17-24. Fish and seafood authenticity is important to support traceability practices and protect the public from economic fraud and adulteration. Molecular-based techniques of PCR are known as the most common methods for identifying seafood species. Nevertheless, these techniques rely on the appropriate primer set designed to amplify specific DNA fragments on targeted species. For efficiency application on a wide range of species, a universal primer set is more valuable than a specific primer. The present study developed universal primers, especially for identifying crustaceans and molluscs based on the cytochrome b mitochondrial DNA (Cyt b). The initial primer pair of CytBL1/CytBH originally designed for fish species was applicable to amplify the Cyt b gene on most selected fish samples, but not for crustacean and mollusc samples. Based on annealing profile, sequence evaluation (92-100% similarity), and RT-PCR analysis, the universal primer couple of CytBL1C/CytBHW designed in the present study potentially applied to identify crustacean and mollusc samples, especially shrimp and bivalve-mollusc.

##plugins.themes.bootstrap3.article.details##

References
Armani A, Castigliego L, Tinacci L, Gianfaldoni D, Guidi A. 2011. Molecular characterization of icefish, (Salangidae family), using direct sequencing of mitochondrial cytochrome b gene. Food Control, 22(6): 888–895. https://doi.org/10.1016/j.foodcont.2010.11.020
Armani A, Giusti A, Guardone L, Castigliego L, Gianfaldoni D, Guidi A. 2016. Universal Primers Used for Species Identification of Foodstuff of Animal Origin: Effects of Oligonucleotide Tails on PCR Amplification and Sequencing Performance. Food Anal Meth, 9(5): 1199–1209. https://doi.org/10.1007/s12161-015-0301-9
Barth JMI, Damerau M, Matschiner M, Jentoft S, Hanel R. 2017. Genomic differentiation and demographic histories of atlantic and indo-pacific yellowfin tuna (Thunnus albacares) populations. Gen Biol Evol, 9(4): 1084–1098. https://doi.org/10.1093/gbe/evx067
Becker S, Hanner R, Steinke D. 2011. Five years of FISH-BOL: Brief status report, Mitochondrial DNA, 22:sup1, 3-9, DOI: 10.3109/19401736.2010.535528
Brescia PJ, Banks P. 2012. DNA Quantification using Gen5TM. BioTek, 1–13. www.biotek.com. Accessed on 6 March 2021.
But GWC, Wu HY, Shao KT, Shaw PC. 2020. Rapid detection of CITES-listed shark fin species by loop-mediated isothermal amplification assay with potential for field use. Sci Rep, 10(1): 1–14. https://doi.org/10.1038/s41598-020-61150-8
Cardeñosa D, Quinlan J, Shea KH, & Chapman DD. 2018. Multiplex real-time PCR assay to detect illegal trade of CITES-listed shark species. Sci Rep, 8(1): 1–10. https://doi.org/10.1038/s41598-018-34663-6
Ceruso M, Mascolo C, De Luca P, Venuti I, Smaldone G., Biffali E, Anastasio A, Pepe T, Sordino P. 2020. A rapid method for the identification of fresh and processed Pagellus erythrinus species against frauds. Foods, 9(10): 1–15. https://doi.org/10.3390/foods9101397
Céspedes A, García T, Carrera E, González I, Sanz B, Hernández PE, Martín R. 1998. Identification of flatfish species using polymerase chain reaction (PCR) amplification and restriction analysis of the cytochrome b gene. J Food Sci, 63(2): 206–209. https://doi.org/10.1111/j.1365-2621.1998.tb15710.x
Cutarelli A, Galiero G, Capuano F, Corrado F. 2018. Species Identification by Means of Mitochondrial Cytochrome b DNA Sequencing in Processed Anchovy, Sardine and Tuna Products. Food Nut Sci, 09(04): 369–375. https://doi.org/10.4236/fns.2018.94029
European Parliament and Council of the European Union. 2013. Regulation (EU) No 1379/2013 of the European Parliament and of the Council of 11 December 2013 on the common organization of the markets in fishery and aquaculture products, amending Council Regulations (EC) No 1184/2006 and (EC) No 1224/2009 and repealing. Official J Europ Union, L354: 1–21. https://www.legislation.gov.uk/eur/2013/1379. Accessed on 6 March 2021.
Feng J, Wu Z, Xie X, Dai Z, Liu S. 2017. A real-time polymerase chain reaction method for the identification of four commercially important salmon and trout species. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 28(1): 104–111. https://doi.org/10.3109/19401736.2015.1111346
Giusti A, Tinacci L, Sotelo CG, Marchetti M, Guidi A, Zheng W, Armani A. 2017. Seafood Identification in Multispecies Products: Assessment of 16SrRNA, cytb, and COI Universal Primers’ Efficiency as a Preliminary Analytical Step for Setting up Metabarcoding Next-Generation Sequencing Techniques. J Agric Food Chem, 65(13): 2902–2912. https://doi.org/10.1021/acs.jafc.6b05802
Helyar SJ, Lloyd HAD, De Bruyn M, Leake J, Bennett N, Carvalho GR. 2014. Fish product mislabelling: Failings of traceability in the production chain and implications for Illegal, Unreported and Unregulated (IUU) fishing. PLoS ONE, 9(6): e98691. https://doi.org/10.1371/journal.pone.0098691
Herrero B, Lago FC, Vieites JM, Espiñeira M. 2012. Real-time PCR method applied to seafood products for authentication of European sole (Solea solea) and differentiation of common substitute species. Food Add Contam - Part A Chem, Anal, Cont, Exposure Risk Assess, 29(1): 12–18. https://doi.org/10.1080/19440049.2011.623682
Horreo JL, Ardura A, Pola IG, Martinez JL, Garcia-Vazquez E. 2013. Universal primers for species authentication of animal foodstuff in a single polymerase chain reaction. J Sci Food Agric, 93(2): 354–361. https://doi.org/10.1002/jsfa.5766
Kim EB, Lee SR, Lee CI, Park H, Kim HW. 2019. Development of the cephalopod-specific universal primer set and its application for the metabarcoding analysis of planktonic cephalopods in Korean waters. PeerJ, 7(e7140): 1–22. https://doi.org/10.7717/peerj.7140
Larsson J, Lind EE, Corell H, Grahn M, Smolarz K, Lönn M. 2017. Regional genetic differentiation in the blue mussel from the Baltic Sea area. Estuarine, Coast Shelf Sci, 195, 98-109, https://doi.org/10.1016/j.ecss.2016.06.016.
Li Y, Song J, Shen X, Cai Y, Cheng H, Zhang X. 2019. The first mitochondrial genome of Macrobrachium rosenbergii from China?: phylogeny and gene rearrangement within Caridea The first mitochondrial genome of Macrobrachium rosenbergii from China?: phylogeny and gene rearrangement within Caridea. Mitochondrial DNA Part B: Res, 4(1): 134–136. https://doi.org/10.1080/23802359.2018.1540262
Liu S, Xu K, Wu Z, Xie X, Feng J. 2016. Identification of five highly priced tuna species by quantitative real-time polymerase chain reaction. Mitochondrial DNA, 27(5): 3270–3279. https://doi.org/10.3109/19401736.2015.1015004.
Mallona I, Weissand J, Marcos, E. 2011. pcr Efficiency: a Web tool for PCR amplification efficiency prediction. BMC Bioinformatics, 12, 404. doi:10.1186/1471-2105-12-404.
Martinez I, Friis TJ. 2004. Application of proteome analysis to seafood authentication. Proteomics, 4(2): 347–354. https://doi.org/10.1002/pmic.200300569
Merritt TJS, Shi L, Chase MC, Rex MA, Etter RJ, Quattro JM. 1998. Universal cytochrome b primers facilitate intraspecific studies in molluscan taxa. Mol Mar Biol Biotechnol, 7(1): 7–11. https://pubmed.ncbi.nlm.nih.gov/9597773/
Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H, Kondoh M, Iwasaki W. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Royal Soc Open Sci, 2(7). https://doi.org/10.1098/rsos.150088
Ng P, Wowor D. 2011. On the nomenclature of the palaemonid names Palaemon spinipes Desmarest, 1817, Palaemon spinipes Schenkel, 1902, and Macrobrachium wallacei. Zootaxa, 2904: 66–68. https://doi.org/10.11646/zootaxa.2904.1.3
Nicolè S, Negrisolo E, Eccher G, Mantovani R, Patarnello T, Erickson DL, Kress WJ, Barcaccia G. 2012. DNA barcoding as a reliable method for the authentication of commercial seafood products. Food Technol Biotechnol, 50(4): 387–398.
Promega Corporation. 2019. Techical Manual Wizard® Genomic DNA Purification Kit Wizard® Genomic DNA Purification Kit. Technical Bull, 1–19. www.promega.com. Accessed on 6 March 2021.
Quellhorst G, Rulli S. 2012. A systematic guideline for developing the best real-time PCR primers Lessons learned from designing assays for more than 14,000 genes. Qiagen, 1–9. www.qiagen.com. Accessed on 6 March 2021.
Rasmussen Hellberg RS, Morrissey MT. 2011. Advances in DNA-based techniques for the detection of seafood species substitution on the commercial market. J Labor Automat, 16(4): 308–321. https://doi.org/10.1016/j.jala.2010.07.004
Sharma L, Watts E, Singh P. 2020. High resolution real-time PCR melting curve assay for identification of top five Penaeidae shrimp species. LWT, 133: 109983. https://doi.org/10.1016/j.lwt.2020.109983
Shokralla S, Hellberg RS, Handy SM, King I, Hajibabaei M. 2015. A DNA Mini-Barcoding System for Authentication of Processed Fish Products. Sci. Rep. 5, 15894, doi: 10.1038/srep15894.
Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc National Acad Sci USA, 101(30): 11030–11035. https://doi.org/10.1073/pnas.0404206101
Thermo Scientific. 2019. NanoDrop 1000 Spectrophotometer V3 . 8 User’s Manual. In Manual (Vol. 9, Issue 11). www.nanodrop.com. Accessed on 6 March 2021.
Zanzi A, Martinsohn JT. 2017. FishTrace: a genetic catalogue of European fishes. Database?: J Biol Databases Curation, 2017: 1–11. https://doi.org/10.1093/database/bax075