Behavioral, physiological, and blood biochemistry of Friesian Holstein dairy cattle at different altitudes in West Java, Indonesia

##plugins.themes.bootstrap3.article.main##

UJANG HIDAYAT TANUWIRIA
IIN SUSILAWATI
DIDIN S. TASRIFIN
LIA BUDIMULYATI SALMAN
ANDI MUSHAWWIR

Abstract

Abstract. Tanuwiria UH, Susilawati I, Tasrifin DS, Salman LB, Mushawwir A. 2021. Behavioral, physiological, and blood biochemistry of Friesian Holstein dairy cattle at different altitudes in West Java, Indonesia. Biodiversitas 23: 533-539. For dairy cows, the study of physiological aspects and those related to it is very important based on altitude. The data of this study are the main considerations to determine the ability of homeostasis, prediction of production and appropriate feed management. This study aims to examine the behavior, physiological abilities, and blood plasma biochemistry of sixty dairy cows. It was conducted using three locations in West Java Province based on topography, namely: (i) location with topography 350-500 meters above sea level (masl): Sukabumi Regency; (ii) location with topography 550-750 masl: Sumedang Regency; and (iii) locations with topography > 800 masl: Bandung Regency. Furthermore, 5 mL of blood samples were taken accurately, using a syringe and a 5 mL tube containing EDTA, respectively. Blood sampling was taken carefully from the jugular vein of dairy cows at the beginning of every month for six sampling periods. After each collection, the whole blood was separated from the plasma directly using a centrifuge, with a speed of 4500 ppm for 7 minutes. The plasma obtained was used to measure the value of blood biochemistry related. The plasma analysis was conducted using a Kenza 240TX model spectrophotometer. The procedure for analyzing blood samples followed the instructions listed in the randox and biolabo kits. Furthermore, behavioral and thermoregulation measurements were performed every week during this research. The results showed an increase in dairy cows' time spent lying and drinking at low altitudes compared to dairy cows at high altitudes. In contrast, rumination and feeding activities were decreased, as shown in the blood's physiological response and biochemical profile. Dairy cows appear to be more challenging to adjust physiologically at lower altitudes.

##plugins.themes.bootstrap3.article.details##

References
Adriani L, Abun, Mushawwir A. 2015. Effect of dietary supplementation of jengkol (Pithecellobium jiringa) skin extract on blood biochemistry and gut flora of broiler chicken. Intl J Poult Sci 14: 407-410. DOI: 10.3923/ijps.2015.407.410.
Adriani L, Mushawwir A. 2020. Correlation between blood parameters, physiological and liver gene expression levels in native laying hens under heat stress. IOP Conf Ser Earth Environ Sci 466: 1-7. DOI: 10.1088/1755-1315/788/1/012091.
Adriani L, Mushawwir A, Kumalasari C, Nurlaleni L, Permana R, Rosani U. 2021. Improving blood protein and albumin level using dried probiotic yogurt in broiler chicken. Jordan J Biol Sci 14: 1021-1024. DOI: 10.10743/jjbs.2021.14.
Allen JD, Hall LW, Collier RJ, Smith JF. 2015. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J Dairy Sci 98: 118-127. DOI: 10.3168/jds.2013-7704.
Ammer S, Lambertz C, von Soosten D, Zimmer K, Meyer U, Dänicke S, Gauly M. 2018. Impact of diet composition and temperature-humidity index on water and dry matter intake of high-yielding dairy cows. J Anim Physiol Anim Nutr 102: 103-113. DOI: 10.1111/jpn.12664.
Burdick NC, Carroll JA, Randel R, Willard S, Vann R, Chase CC, Lawhon S, Hulbert LE, Welsh JT. 2011. Influence of temperament and transportation on physiological and endocrinological parameters in bulls. Livest Sci 139: 213-221. DOI: 10.1017/S1466 252318000075.
Cai X, Chiu YH, Chen ZJ. 2014. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell 54: 289-296. DOI: 10.1016/j.molcel.2014.03.040.
Carrol EC, Jin L, Mori A, Wolf MN, Oleszycka E, Moran HBT, Mansouri S, McEntee CP, Lambe E, Agger EM, Andersen P, Cunningham C, Hertzog P, Fitzgerald KA, Bowie AG, Lavelle EC. 2016. The vaccine adjuvant chitosan promotes celluler immunity via DNA Sensor Cgas-STING-Dependent induction of type I interferons. Immunity 44: 1-12. DOI: 10.1016/j.immuni.2016.02.004.
Dhanasekaran D, Shanmugapriya S, Thajuddin N, Panneerselvam A. 2011. Aflatoxins and aflatoxicosis in human and animals. In: Dr. Gonzalez RGG (eds). Aflatoxins Biochemistry and Molecular Biology. InTech, London, UK. DOI: 10.5772/22717.
Eyng C, Murakami AE, Santos TC, Silveira TGV, Pedrosa TB, Lourenco DAL. 2015. Immune responses in broiler chicks fed propolis extraction residue-supplemented diets Asian-Australas. J Anim Sci 28: 135-142. DOI: 10.5713/ajas.14.0066.
Fabris TF, Laporta J, Corra FN. 2017. Effect of nutritional immunomodulation and heat stress during the dry period on subsequent performance of cows. J Dairy Sci 100: 6733-6742. DOI: 10.3168/jds.2016-12313.
Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T, Zahn S, Tuting T, Hartmann G, Barchet W. 2013. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and pontentiates STING-Dependent immune sensing. Immunity 39: 482-495. DOI: 10.1016/j.immuni.2013.08.004.
Gray LR, Sultana MR, Rauckhorst AJ. 2015. Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostatis. Cell Metabol 22: 669-681. DOI: 10.1016/j.cmet.2015.07.027.
Grelet C, Bastin C, Gelé M, Davière JB, Johan M, Werner A, Reding R, Fernandez Pierna JA, Colinet FG, Dardenne P, Gengler N, Soyeurt H, Dehareng F. 2016. Development of fourier transform mid-infrared calibrations to predict acetone, ?-hydroxybutyrate and citrate contents in bovine milk through a European dairy network. J Dairy Sci 99: 4816-4825. DOI: 10.3168/jds.2015-10477.
Hecker JG, McGarvey M. 2011. Heat shock proteins as biomarkers for the rapid detection of brain and spinal cord ischemia: A review and comparison to other methods of detection in thoracic aneurysm repair. Cell Stress Chaperones 16: 119-131. DOI: 10.1007/s12192-010-0224-8.
Hernawan E, Adriani L, Mushawwir A, Cahyani C, Darwis D. 2017. Effect of dietary supplementation of chitosan on blood biochemical profile of laying hens. Pak J Nutr 16: 696-699. DOI: 10.3923/pjn.2017. 696.699.
Hetti AAD, Fisher AD, Wales WJ, Auldist MJ, Hannah MC, Jongman EC. 2014. Space allowance and barri-ers influence cow competition for mixed rations fed on a feed-pad between bouts of grazing. J Dairy Sci 97: 3578-3588. DOI: 10.3168/jds.2013-7553.
Hidayat R, Kamil KA, Suryanigsih L, Utama GL, Balia RL. 2019 Effect of macronutrient needs on digestibility and average daily gain of sheep (Ovis aries var. Padjadjaran, Family Bovidae). Intl J Adv Sci Eng Inf Tech 9: 1618-1623. DOI: 10.18517/ijaseit.9.5.9292.
Hohenbrink S, Meinecke-Tillmann S. 2012. Influence of social dominance on the secondary sex ratio and factors affecting hierarchy in Holstein dairy cows. J Dairy Sci 95: 5694-5701. DOI: 10.3168/jds.2011-528.
Ippolito DL, Lewis JA, Yu C, Leon LR, Stallings JD. 2014. Alteration in circulating metabolites during and after heat stress in the conscious rat: Potential biomarkers of exposure and organ specific injury. BMC Physiol 14: 23-29. DOI: 10.1186%2Fs12899-014-0014-0.
István F, Zsolt L, László Ó. 2020. Relationship of dairy heifer reproduction with survival to first calving, milk yield and culling risk in the first lactation. Asian-Australas J Anim Sci 33: 1360-1368. DOI: 10.5713/ajas.19.0474.
Kamil KA, Latipudin D, Mushawwir A, Rahmat D, Balia RL. 2020. The effects of ginger volatile oil (GVO) on the metabolic profile of glycolytic pathway, free radical and antioxidant activities of heat-stressed cihateup duck. Intl J Adv Sci Eng Inf Tech 10: 1228-1233. DOI: 10.1817/ijaseit.10.3.11117.
Khan S, Anwar K, Kaleem K, Saeed A, Nabi H, Hayat A, Ahmad Z, Hayan F, Safirullah. 2015. Study of phenotypic and morphometric characteristics of Achai cattle at Livestock Research and Development Station Dir (Lower), Pakistan. Pak J Nutr 14: 201-203. DOI: 10.4737/pjn.2015.452.774.
Lomb J, Neave HW, Weary DM, LeBlanc SJ, Huzzey JM, von Keyserlingk MAG. 2018. Changes in feeding, social, and lying behaviors in dairy cows with metritis following treatment with a nonsteroidal anti-inflammatory drug as adjunctive treat-ment to an antimicrobial. J Dairy Sci 101: 4400-4411. DOI: 10.3168/jds.2017-13812.
Loyau T, Metayer-Coustard S, Berri C, Crochet S, Cailleau-Audouin S, Sannier M, Chartrin P, Praud C, Hennequet-Antier C, Rideau N, Courousse N, Mignon-Grasteau, Everaert N, Duclos MJ, Yahav S, Tesseraud S, Collin A. 2014. Thermal manipulation during embryogenesis has longterm effects on muscle and liver metabolism in fast-growing chickens. PLoS One 9: 1-13. DOI: 10.1371/journal.pone.0105339.
Mingoti RD, Freitas JE, Gandra JR, Gardinal R, Calomeni GD, Barletta RV, Vendramini THA, Paiva PG, Renno FP. 2016. Dose response of chitosan on nutrient digestibility, blood metabolites abd lactation performance in Holstein dairy cows. Livest Sci 187: 35-39. DOI: 10.1016/j.livsci.2016.02.008.
Monteiro AP, Guo JR, Weng XS. 2016. Effect of maternal heat stress during the dry period on growth and metabolism of calves. J Dairy Sci 99: 3896-3907. DOI: 10.3168/jds.2015-10699.
Mushawwir A, Permana R, Latipudin D, Suwarno N. 2021. Organic Diallyl-n-Sulfide (Dn-S) inhibited the glycogenolysis pathway and heart failure of heat-stressed laying hens. IOP Conf Ser Earth Environ Sci 788: 1-7. DOI: 10.1088/1755-1315/788/1/012091.
Mushawwir A, Arifin J, Darwis D, Puspitasari T, Pengerteni DS, Nuryanthi N, Permana R. 2020. Liver metabolic activities of Pasundan cattle induced by irradiated chitosan. Biodiversitas 21: 5571-5578. DOI: 10.13057/biodiv/ d211202.
Mushawwir A, Adriani L, Kamil KA. 2011. Prediction models for olfactory metabolic and sows % RNAreticulocyt (RNArt) by measurement of atmospheric ammonia exposure and microclimate level. J Indones Trop Anim Agric 36: 14-20. DOI: 10.14710/jitaa.36.1.14-20.
Mushawwir A, Tanuwiria UH, Kamil KA, Adriani L, Wiradimadja R, Suwarno N. 2018. Evaluation of haematological responses and blood biochemical parameters of heat-stressed broilers with dietary supplementation of Javanese ginger powder (Curcuma xanthorrhiza) and garlic extract (Allium sativum). Intl J Poult Sci 17: 452-458. DOI: 10.3923/ijps.2018.452.458.
Mushawwir A, Yong YK, Adriani L, Hernawan E, Kamil KA. 2010. The fluctuation effect of atmospheric ammonia (NH3) exposure and microclimate on hereford bulls hematochemical. J Indones Trop Anim Agric 35: 232-238. DOI: 10.14710/jitaa.35.4.232-238.
Mushawwir A, Permana R, Darwin D, Puspitasari T, Pangerteni D S, Nuryanthi N, Suwarno N. 2021. Enhancement of the liver histologic of broiler induced by irradiated chitosan (IC). IAP Conf Proc 2381: 0200461-0200467. DOI: 10.1063/5.0066271.
Na YK, Sang HM, Seong JK, Eun KK, Mirae O, Yujiao T, Se YJ. 2020. Summer season temperature-humidity index threshold for infrared thermography in hanwoo (Bos taurus coreanae) heifers. Asian-Australas J Anim Sci 33: 1691-1698. DOI: 10.3791/52703.
Pickler L, Breno C, Beirão B, Ricardo M, Hayashi J, Durau F, Lourenço MC, Caron LF, Santin E. 2013. Effect of sanguinarine in drinking water on Salmonella control and the expression of immune cells in peripheral blood and intestinal mucosa of broilers. J Appl Poult Res 22: 430-438. 10.3382/japr.2012-00649.
Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine JL, Collier RL. 2012. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6: 707-728. DOI: 10.1017/S1751731111002448.
Roland L, Drillich M, Klein-Jobstl D, Iwernes M. 2016. Invited review: Influence of climatic conditions on the development, performance, and health of claves. J Dairy Sci 99: 2438-2452. DOI: 10.3168/jds.2015-9901.
Sang-Ho M, Eun-Kyung K, Se YJ, Yujiao T, Hye-Jin S, Yeong SY, Sanguk C, Mirae O. 2018. Fatty acid compositions, free radical scavenging activities, and antioxidative enzyme activities of high-preference and low-preference beef cuts of Hanwoo (Bos taurus coreanae) cows. Asian-Australas J Anim Sci 31: 1974-1979. DOI: 11.1017/S17517311150008963.
Seok HL, Chang HD, Yun HC, Chang GD, Alam M, Kanghyun C. 2019. Estimation of the genetic milk yield parameters of Holstein cattle under heat stress in South Korea. Asian-Australas J Anim Sci 32: 334-340. DOI: 10.5713/ajas.18.0258.
Siskos AP, Jain P, Romisch-Margl W. 2017. Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma. Anal Chemi 89: 656-665. DOI: 10.1021/acs.analchem.6b02930.
Slimen B, Najar T, Ghram A, Abdrranna M. 2016. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr 100: 401-412. DOI: 10.1111/jpn.12379.
Suryaningsih L, Hidayat R, Utama GL, Pratama A, Balia RL. 2019. Effect of lactic acid bacteria and yeasts towards chemical, physical and organoleptic qualities of mutton salami. Intl J Adv Sci Eng Inf Tech 9: 829-834. DOI: 10.18517/ijaseit.9.3.8011.
Tanuwiria UH, Mushawwir A. 2020. Hematological and antioxidants responses of dairy cow fed with a combination of feed and duckweed (Lemna minor) as a mixture for improving milk biosynthesis. Biodiversitas 21: 4741-4746. DOI: 10.13057/biodiv/ d211038.
Tanuwiria UH, Santosa U, Yulianti AA, Suryadi U. 2011. The effect of organic-Cr dietary supplementation on stress response in transport-stressed beef cattle. J Indones Trop Anim Agric 36: 97-103. DOI: 10.14710/jitaa.36.2.97-103.
Tian H, Wang W, Zheng N. 2015. Identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows. J Proteom 125: 17-28. DOI: 10.1016/j.jprot.2015.04.014.
Tian H, Zheng N, Wang W. 2016. Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Sci Rep 6: 24-28. DOI: 10.1038/srep24208.
Sisay T, Alemayehu K, Haile M.2018. Handling and marketing of dairy products in and around Bahir DarMilkshed Areas, Ethiopia. Trop Drylands 2: 48-58. DOI: 10.13057/tropdrylands/t020203.
Valle TA, Paiva PG, Jesus EF, Almeida GF, Zanferari F, Costa AGBVB, Bueno IGS, Renno FP. 2017. Dietary chitosan improves nitrogen use and feed conversion in diets for mid-lactation dairy cows. Livest Sci 201: 22-29. DOI: 10.16636/LS421731435207533.
Vizzotto EF, Fischer V, Thaler NA. 2015. Access to shade changes behavioral and physiological attributes of dairy cows during the hot season in the subtropics. Animal 9: 1559-1566. DOI: 10.1017/S1751731115000877.
Wang Y, Cohen J, Boron WF, Schulten K, Tajkhorshid E. 2007. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 157: 534-544. DOI: 10.1016/j.jsb.2006.11.008.
Xu B, Chen M, Ji X. 2015. Metabolomic profiles reveal key metabolic changes in heat stress-treated mouse Sertoli cells. Toxicol Vitro 29: 1745-1752. DOI: 10.1016/j.tiv.2015.07.009.