Detection of marine microalgae (phytoplankton) quality to support seafood health: A case study on the west coast of South Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

RAHMADI TAMBARU
ANDI I. BURHANUDDIN
ARNIATI MASSINAI
MUHAMMAD A. AMRAN

Abstract

Abstract. Tambaru R, Burhanuddin AI, Massinai A, Amran MA. 2021. Detection of marine microalgae (phytoplankton) quality to support seafood health: a case study on the west coast of South Sulawesi, Indonesia. Biodiversitas 22: 5179- 5186. The research aimed to detect marine microalgae quality to support seafood health was carried out from January to November 2020 along the west coast of South Sulawesi, Indonesia. Samples were collected from the coastal waters of Pangkep District, Maros District, and the northern part of Makassar City. Phytoplankton cell counts were obtained using the deposition method developed by Uthermol. Phytoplankton cell abundances were calculated through sweeping (census) using a Sedgwick Rafter Cell (SRC). Two-way analysis of variance (ANOVA) was used to compare the distribution of marine microalgae community abundance between observation stations and periods. Based on the types and relative abundance of phytoplankton present, i.e., harmful algal bloom (HAB) forming or not (non-HAB), the results showed the quality of marine microalgae, specifically, phytoplankton was relatively good. Many more non-HAB (94-98%) than HAB (2-6%) marine microalgae were detected. Thus, the phytoplankton flourishing in these waters is mostly suitable as food for other organisms, including fish and shellfish. This also means that if fishers harvest these fish and shellfish, they should be fit and safe for human consumption.

##plugins.themes.bootstrap3.article.details##

References
Angara, EV, Rillon GS, Carmona ML, Ferreras JEM, Vallejo MI, Amper AC, Lacuna ML. 2013. Diversity and abundance of phytoplankton in Casiguran waters, Aurora Province, Central Luzon, northern Philippines. Aquac Aquar Conserv Legis 6(4): 358-377.
Baek SH, Lee M, Park BS, Lim YK. 2020. Variation in phytoplankton community due to an autumn typhoon and winter water turbulence in southern Korean coastal waters. Sustainability 12(7): 2781.
Berdalet E, Kudela RM, Banas NS, Bresnan E, Burford MA, Davidson K, Gobler CJ, Karlson B, Lim PT, Mackenzie L. 2018. GlobalHAB: fostering international coordination on harmful algal bloom research in aquatic systems. GEOHAB: 425-447.
Boesch DF, Rabalais NNJGS. 1991. Effects of hypoxia on continental shelf benthos: comparisons between the New York Bight and the Northern Gulf of Mexico. Geol Soc Spec Publ 58(1): 27-34.
Brahem M, Eder S, Renard CMGC, Loonis M, Le Bourvellec C. 2017. Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT 85: 380-384. DOI: 10.1016/j.lwt.2016.09.009.
Castellani C, Edwards M. 2017. Marine Plankton: A practical guide to ecology, methodology, and taxonomy. Oxford University Press; 2017. 667 p.
Cui L, Lu X, Dong Y, Cen J, Cao R, Pan L, Lu S, Ou L. 2018. Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: A region with recurrent brown tide outbreaks. Ecotoxicol Environ Saf 159: 85-93. DOI: 10.1016/j.ecoenv.2018.04.043.
Desrosiers C, Leflaive J, Eulin A, Ten-Hage L. 2013. Bioindicators in marine waters: benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems. Ecol Indic 32: 25-34. DOI: 10.1016/j.ecolind.2013.02.021.
Dietrich J, Sommersdorf C, Gohlke S, Poetz O, Traenkle B, Rothbauer U, Hessel-Pras S, Lampen A, Braeuning A. 2019. Okadaic acid activates Wnt/?-catenin-signaling in human HepaRG cells. Arch Toxicol 93(7): 1927-1939. DOI: 10.1007/s00204-019-02489-4.
Farabegoli F, Blanco L, Rodríguez LP, Vieites JM, Cabado AG. 2018. Phycotoxins in marine shellfish: Origin, occurrence and effects on humans. Mar Drugs 16(6): 188. DOI: 10.3390/md16060188.
Ferreira A, Sá C, Silva N, Beltrán C, Dias AM, Brito AC. 2020. Phytoplankton response to nutrient pulses in an upwelling system assessed through a microcosm experiment (Algarrobo Bay, Chile). Ocean Coast Manag 190: 105167. DOI: 10.1016/j.ocecoaman.2020.105167.
Fujiwara A, Nishino S, Matsuno K, Onodera J, Kawaguchi Y, Hirawake T, Suzuki K, Inoue J, Kikuchi T. 2018. Changes in phytoplankton community structure during wind-induced fall bloom on the central Chukchi shelf. Polar Biol 41: 1279-1295. DOI: 10.1007/s00300-018-2284-7.
Gao P, Wang P, Chen S, Bi W, Lu S, He J, Wang X, Li K. 2020. Effect of ambient nitrogen on the growth of phytoplankton in the Bohai Sea: kinetics and parameters. J Geophys Res Biogeosci 125(12): e2020JG005643. DOI: 10.1029/2020JG005643.
George B, Kumar JIN, Kumar RN. 2012. Study on the influence of hydro-chemical parameters on phytoplankton distribution along Tapi estuarine area of Gulf of Khambhat, India. Egypt J Aquat Res 38(3): 157-170. DOI: 10.1016/j.ejar.2012.12.010
Grattan LM, Holobaugh S, Morris Jr JG. 2016. Harmful algal blooms and public health. Harmful algae 57: 2-8. DOI: 10.1016/j.hal.2016.05.003.
Hasani Q, Adiwilaga EM, Pratiwi NTM. 2013. The relationship between the harmful algal blooms (habs) phenomenon with nutrients at shrimp farms and fish cage culture sites in pesawaran district Lampung Bay. Makara J Sci 16 (3):183-191. DOI: 10.7454/mss.v16i3.1480.
Hughes BB, Haskins JC, Wasson K, Watson E. 2011. Identifying factors that influence expression of eutrophication in a central California estuary. Mar Ecol Prog Ser 439: 31-43. DOI: 10.3354/meps09295.
Krock B, Ferrario ME, Akselman R, Nora G. 2018. Occurrence of marine biotoxins and shellfish poisoning events and their causative organisms in Argentine marine waters. Oceanogr 31(4): 132-144.
Kudela RM, Raine R, Pitcher GC, Gentien P, Berdalet E, Enevoldsen H, Urban E. 2018. Establishment, Goals, and Legacy of the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) Programme. In: Glibert P., Berdalet E., Burford M., Pitcher G., Zhou M. (eds) Global Ecology and Oceanography of Harmful Algal Blooms. Ecological Studies (Analysis and Synthesis) 232: 27-49.DOI: 10.1007/978-3-319-70069-4_3.
Loureiro S, Reñé A, Garcés E, Camp J, Vaqué D. 2011. Harmful algal blooms (HABs), dissolved organic matter (DOM), and planktonic microbial community dynamics at a near-shore and a harbour station influenced by upwelling (SW Iberian Peninsula). J Sea Res 65(4): 401-413. DOI: 10.1016/j.seares.2011.03.004
Lu Y, Yuan J, Lu X, Su C, Zhang Y, Wang C, Cao X, Li Q, Su J, Ittekkot V, Garbutt RA, Bush S, Fletcher S, Wagey T, Kachur A, Sweijd N. 2018. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ Pollut 239: 670-680. DOI: 10.1016/j.envpol.2018.04.016.
Mahmudi M, Serihollo LG, Herawati EY, Lusiana ED, Buwono RE. 2020. A count model approach on the occurrences of harmful algal blooms (HABs) in Ambon Bay. Egypt J Aquat Res 46(4): 347-353. DOI: 10.1016/j.ejar.2020.08.002.
Marinov I, Doney SC, Lima ID. 2010. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences 7(12): 3941-3959. DOI: 10.5194/bg-7-3941-2010.
Mochemadkar S. 2012. Effect of Oxygen Deficiency on Productivity and Plankton Composition in the Arabian Sea. [Dissertation]. Goa University.
Pettersson LH, Pozdnyakov D. 2012. Qualification, species variety, and consequences of harmful algal blooms (HABs). Monitoring of Harmful Algal Blooms. Springer, Berlin, Heidelberg: 1-24. DOI: 10.1007/978-3-540-68209-7_1.
Pitcher GC, Probyn TA. 2016. Suffocating Phytoplankton, Suffocating Waters-Red Tides and Anoxia. Front Mar Sci 3: 186. DOI: 10.3389/fmars.2016.00186.
Rocha FC, Andrade EM, Lopes FB. 2015. Water quality index calculated from biological, physical and chemical attributes. Environ Monit Assess 187(4163): 1-15. DOI: 10.1007/s10661-014-4163-1.
Rodrigues SM, de Carvalho M, Mestre T, Ferreira JJ, Coelho M, Peralta R, Vale P. 2012. Paralytic shellfish poisoning due to ingestion of Gymnodinium catenatum contaminated cockles-application of the AOAC HPLC official method. Toxicon 59(5): 558-566. DOI: 10.1016/j.toxicon.2012.01.004.
Rukminasari N, Tahir A. 2020. Species Assemblages and Distribution of Dinoflagellate Cysts from three Estuaries Sediment’s of Makassar Strait, Eastern Indonesia. Online J Biol Sci 21(2): 232-244.
Shadrin NV, Anufriieva EV, Belyakov VP, Bazhora AI. 2017. Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production. Eur Zool J 84(1): 61-72. DOI: 10.1080/11250003.2016.1273974.
Sunda WG. 2012. Feedback interactions between trace metal nutrients and phytoplankton in the ocean. A Review. Front microbiol 3: 204. DOI: 10.3389/fmicb.2012.00204.
Sunesen I, Hernández BDU, Sar EA. 2008. Marine diatoms from Buenos Aires coastal waters (Argentina). V. Species of the genus Chaetoceros. Rev Biol Mar Oceanogr 43. DOI: 10.4067/S0718-19572008000200009.
Takarina ND, Nurliansyah W, Wardhana W. 2019. Relationship between environmental parameters and the plankton community of the Batuhideung Fishing Grounds. Biodiversitas 20(1): 171-180. DOI: 10.13057/biodiv/d200120.
Taylor M, McIntyre L, Ritson M, Stone J, Bronson R, Bitzikos O, Rourke W, Galanis E, Team OI. 2013. Outbreak of diarrhetic shellfish poisoning associated with mussels, British Columbia, Canada. Mar Drugs 11(5): 1669-1676. DOI: 10.3390/md11051669.
Tester PA, Litaker RW, Berdalet E. 2020. Climate change and harmful benthic microalgae. Harmful algae 91: 101655. DOI: 10.1016/j.hal.2019.101655.
Tian R, Chen J, Sun X, Li D, Liu C, Weng H. 2018. Algae explosive growth mechanism enabling weather-like forecast of harmful algal blooms. Sci Rep 8(1): 1-7. DOI: 10.1038/s41598-018-28104-7.
Tillmann U, Elbrächter M, John U, Krock B, Cembella A. 2010. Azadinium obesum (Dinophyceae), a new nontoxic species in the genus that can produce azaspiracid toxins. Phycologia 49(2): 169-182. DOI: 10.2216/PH09-35.1.
Todd PA, Heery EC, Loke LH, Thurstan RH, Kotze DJ, Swan C. 2019. Towards an urban marine ecology: characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos 128(9): 1215-1242. DOI: 10.1111/oik.05946.
Tomas (ed). 1997. Identifying marine phytoplankton. Academic Press. 570 p.
Trainer VL, Moore L, Bill BD, Adams NG, Harrington N, Borchert J, Da Silva DAM, Eberhart B-TL. 2013. Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington State. Marine Drugs 11(6): 1815-1835. DOI: 10.3390/md11061815.
Vadrucci MR, Roselli L, Castelluccia D, Di Festa T, Donadei D, Florio M, Longo E, D'Arpa S, Maci F, Ranieri S, Spinelli M, Pastorelli A, Ungaro N 2018. PhytoNumb3rs: An easy-to-use computer toolkit for counting microalgae by the Utermöhl method. Ecol Inform 46: 147-155. DOI: 10.1016/j.ecoinf.2018.06.007.
Visciano P, Schirone M, Berti M, Milandri A, Tofalo R, Suzzi G. 2016. Marine biotoxins: occurrence, toxicity, regulatory limits and reference methods. Front microbiol 7: 1051. DOI: 10.3389/fmicb.2016.01051.
Work TM, Moeller PDR, Beauchesne KR, Dagenais J, Breeden R, Rameyer R, Walsh WJ, Abecassis M, Kobayashi DR, Conway C, Winton J. 2017. Pufferfish mortality associated with novel polar marine toxins in Hawaii. Dis Aquat Organ 123(2): 87-99. DOI: 10.3354/dao03096.
Xiao X, Agustí S, Pan Y, Yu Y, Li K, Wu J, Duarte CM. 2019. Warming amplifies the frequency of harmful algal blooms with eutrophication in Chinese coastal waters. Environ Sci Technol 53(22): 13031-13041. DOI: 10.1021/acs.est.9b03726.
Zohdi E, Abbaspour M. 2019. Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction. Int J Environ Sci Technol 16(3): 1789-1806. DOI: 10.1007/s13762-018-2108-x.

Most read articles by the same author(s)