Chlorogenic acid and caffeine content of fermented robusta bean

##plugins.themes.bootstrap3.article.main##

TJAHJADI PURWOKO
SURANTO
RATNA SETYANINGSIH
SOERYA DEWI MARLIYANA

Abstract

Abstract. Purwoko T, Suranto, Setyaningsih R, Marliyana SD. 2021. Chlorogenic acid and caffeine content of fermented robusta bean. Biodiversitas 23: 902-906. Robusta beans contain caffeine and chlorogenic acid higher than arabica beans, however, it has a lower economic value than arabica beans. Therefore, microorganisms in the robusta bean for the fermentation process are expected to reduce caffeine and chlorogenic acid contents. The objective of this research was to investigate the ability of fungus Rhizopus oryzae, yeast Saccharomyces cerevisiae, and bacteria Lactobacillus casei and Leuconostoc mesenteroides in degrading caffeine and chlorogenic acid content of robusta beans. Analysis of caffeine and chlorogenic acid content was carried out by spectrophotometer at OD275 and OD324, respectively. The caffeine and chlorogenic acid content of unfermented robusta beans were 18.64 mg/g and 62.18 mg/g. Saccharomyces cerevisiae, L. mesenteroides, L. casei, and R. oryzae were able to degrade caffeine, and reduce the caffeine content of fermented robusta beans to 16.92, 16.71, 16.67, and 13.57 mg/g, respectively. The decrease of caffeine by S. cerevisiae, L. mesenteroides and L. casei were not significantly different (p>0.05) from control, however, the decrease of caffeine by R. oryzae was significant (p<0.05). Saccharomyces cerevisiae, R. oryzae, L. mesenteroide, and L. casei were able to degrade chlorogenic acid and reduce the chlorogenic acid content of fermented robusta beans to 44.54, 45.21, 45.79, and 47.31 mg/g. Chlorogenic acid was reduced significantly by S. cerevisiae, R. oryzae, L. mesenteroides, and L. casei (p<0.05). It can be concluded that R. oryzae was a potential microorganism to reduce caffeine and chlorogenic acid contents in robusta beans.

##plugins.themes.bootstrap3.article.details##

References
Budryn, G., E. Nebesny & J. Oracz. 2015. Correlation between the stability of chlorogenic acids, antioxidant activity and acrylamide content in coffee beans roasted in different conditions. International Journal of Food Properties. DOI: 10.1080/10942912.2013.805769.
Couteau, D., A.L. McCartney, G.R. Gibson, G. Williamson & C.B. Faulds. 2001. Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. Journal of Applied Microbiology 90: 873-881.
Farah, A. 2012. Coffee constituents. In Chu, Y.F. (ed.) 1st. ed. Coffee: Emerging health effects and disease prevention. Blackwell Publishing Ltd New York.
Flament, I. 2002. Coffee flavor chemistry. John Wiley & Sons Ltd. Geneva.
Gauthier, L., M.N. Bonnin-Verdal, G. Marchegay, L. Pinson-Gadais, C. Ducos, F. Richard-Forget & V. Atanasova-Penichon. 2016. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. International Journal Food Microbiology. DOI: 10.1016/j.ijfoodmicro.2016.01.005
Gonthier, M.P., M.A. Verny, C. Besson, C. Remesy & A. Scalbert. 2003. Chlorogenic acid bioavailability largely depends on its metabolism by the gut micro?ora in rats. J Nutr. DOI: 10.1093/jn/133.6.1853
Hakil, M., S. Denis, G. Viniegra-Gonzalez & C. Augur. 1998. Degradation and product analysis of caffeine and related dimethylxanthines by filamentous fungi. Enzyme and Microbial Technology 22:355-359.
Hatiningsih, S., N.S. Antara, & I.B.W. Gunam. 2018. Microbiological and physicochemical changes of green coffee (Coffea arabica) fermentation in kintamani Bangli Bali. Scientific Journal of Food Technology 5(2): 123-138.
Ibrahim, S., M.Y. Shukor, M.A. Syed, N.A.A. Rahman, K.A. Khalil, A. Khalid & S.A. Ahmad. 2014. Bacterial degradation of caffeine: A Review. Asian Journal of Plant Biology 2(1): 18-27
Kabir, F., S. Katayama, N. Tanji & S. Nakamura. 2014. Antimicrobial effects of chlorogenic acid and related compounds. J Korean Soc Appl Biol Chem. DOI: 10.1007/s13765-014-4056-6
Kim J.H., B.H. Kim, S. Brooks, S.Y. Kang, R.M. Summers, H.K. Song. 2019. Structural and mechanistic insights into caffeine degradation by the bacterial n-demethylase complex. J Mol Biol. DOI: 10.1016/j.jmb.2019.08.004.
Kobeticova, K., V. Koci, M, Petrikova, K. Simunkova & R. Cerny. 2019. Growth effectivity of molds in contact with methylxanthines. MATEC Web of Conferences. DOI: 10.1051/matecconf /201928.
Kulik, T., K. Stuper-Szablewska, K. Bilska, M. Busko, A. Ostrowska-Ko?odziejczak, D. Za?uski & J. Perkowski. 2017. Trans-Cinnamic and chlorogenic acids affect the secondary metabolic pro?les and ergosterol biosynthesis by Fusarium culmorum and F. graminearum sensu stricto. Toxins. DOI: 10.3390/toxins9070198.
Lafay, S., C. Morand, C. Manach, C. Besson & A. Scalbert. Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. British Journal of Nutrition. DOI: 10.1079/BJN20051714.
Lee, L.L.W, M.W. Cheong, P. Curran, B. Yu & S.Q. Liu. 2016. Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: I. Green coffee. Food Chemistry. DOI:10.1016/j.foodchem.2016.05.076
Matan, Na, Nonthakaew, A., T. Aewsiri, & Ni. Matan. 2015. Caffeine in foods and its antimicrobial activity. International Food Research Journal 22(1): 9-14.
Mills, C.E., X. Tzounis, M.J Oruna-Concha, D.S. Mottram, G.R. Gibson & J.P.E. Spencer. 2015. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. British Journal of Nutrition 113: 1220-1227.
Mukhtar, I, A. Iftikhar, M. Imran, M.U. Ijaz, S. Irfan & H. Anwar. 2021. The Competitive absorption by the gut microbiome suggests the first-order absorption kinetics of caffeine. Dose-Response. DOI: 10.1177/15593258211033111
Mazzafera, P. 2002. Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Scientia Agricola 59(4):.815-821.
Navarra, G., M. Moschetti, V. Guarrasi, M.R. Mangione, V. Militello & M. Leone. 2017. Simultaneous determination of caffeine and chlorogenic acids in green coffee by uv/vis spectroscopy. Journal of Chemistry. DOI: 10.1155/2017/6435086
Pusat Data dan Informasi Pertanian. 2017. Outlook kopi. Pusat Data dan Informasi Pertanian Sekjen Kementrian Pertanian. Jakarta. (Indonesian)
Pokorna, J., P.R. Venskutonic, V. Kraujalyte, P. Kraujali, P. Dvorak. B. Tremlova, V. Kopriva & M. Ostadalova. 2015. Comparison of different methods of antioxidant activity evaluation of green and roast C. arabica and C. robusta coffee beans. Acta Alimentaria. DOI: 10.1556/066.2015.44.0017.
Roy, R. 2019. Review: Biochemical studies on chlorogenic acid & its pharmacological effect. RJLBPCS 5(3): 229
Ruta, L.L. & I.C. Farcasanu, 2020. Saccharomyces cerevisiae and caffeine implications on the eukaryotic cell. Nutrients. DOI: 10.3390/nu12082440
Schobel, B. & W. Pollmann. 1980. Isolation and Characterization of a chlorogenic acid esterase from Aspergillus niger. Z. Naturforsch 35c: 209-212
Summers, R.M., S.K. Mohanty, S. Gopishetty & M. Subramanian. 2015. Genetic characterization of caffeine degradation by bacteria and its potential applications. Microbial Biotechnology. DOI:10.1111/1751-7915.12262
Tagliari, C.V., R.K. Sanson, A. Zanette, T.T. Franco & C.R. Soccol. 2003. Caffeine degradation by Rhizopus delemar in packed bed column bioreactor using coffee husk as substrate. Brazilian Journal of Microbiology 34 (Suppl.1):102-104.
Tawali, A.B., N. Abdullah & B.S. Wiranata. 2018. Pengaruh fermentasi menggunakan bakteri asam laktat yoghurt terhadap citarasa kopi robusta (Coffea robusta). Canrea Journal. DOI: 10.20956/canrea.v1i1.26 (Indonesian)
Tomas-Barberan, F., R. García-Villalba, A. Quartieri, S. Raimondi, A. Amaretti, A. Leonardi & M. Rossi. 2014. In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res. DOI: 10.1002/mnfr.201300441.
Vieira, A.J.S.C., E.M. Gaspar & P.M.P. Santos. 2020. Mechanisms of potential antioxidant activity of caffeine. Radiation Physics and Chemistry. DOI: 10.1016/j.radphyschem.2020.108968.
Wang, N. 2012. Physicochemical changes of coffee beans during roasting [Thesis] The University of Guelph. Ontario

Most read articles by the same author(s)

<< < 1 2 3 4 > >>