Assessment of water quality with comparative study of soil organic carbon stock in Nagdaha Lake and its adjacent agricultural land of Lalitpur, Nepal

##plugins.themes.bootstrap3.article.main##

MAMTA BHATTA
RAJEEV JOSHI

Abstract

Abstract. Bhatta M, Joshi R. 2023. Assessment of water quality with comparative study of soil organic carbon stock in Nagdaha Lake and its adjacent agricultural land of Lalitpur, Nepal. Intl J Bonorowo Wetlands 13: 9-16. The lakes are an important component of the terrestrial Carbon (C) cycle. Estimates of global C burial by lakes suggest burial rates ranging from 0.03-0.07 Pg C yr?1. In the present study, the water quality of Nagdaha Lake and comparative analysis of Soil Organic Carbon (SOC) in Nagdaha Lake and its adjoining agricultural area has been studied. Water quality was determined following APHA (1998); SOC was determined by the Walkey and Black (1934) Titration Method. The present study results show that the mean N-nitrate and P-phosphate concentration in the waters of Nagdaha Lake is 0.135 mg/L and 0.123 mg/L, respectively, and the mean SOC concentration of Nagdaha Lake (71.39±42.58g kg-1) is higher than the adjacent agricultural land (14.36±8.38g kg-1). The t-test result also shows that there is a significant difference in SOC concentration in lakes (t = 9.18) and agricultural (t = 7.66) for agricultural land (p < 0.0001). Nagdaha Lake's area decreased from 52 ropani to 42 ropani between 1964 and 2022. Despite the decrease in area, Nagdaha Lake has more carbon per unit area than agricultural land. Since the conversion of lake land to agricultural land can release a large amount of carbon into the atmosphere, it is imperative to preserve the lakes to mitigate increasing atmospheric CO2 concentration.

##plugins.themes.bootstrap3.article.details##

References
Algesten G, Sobek S, Bergström AK, Ågren A, Tranvik LJ, Jansson M. 2004. Role of lakes for organic carbon cycling in the boreal zone. Glob Change Biol 10 (1): 141-147. DOI: 10.1111/j.1365-2486.2003.00721.x.
Amezcua N, Gawthorpe RL, Marshall J. 2021. Lacustrine carbonate lithofacies characterization, paleontological content and depositional processes in the Mayrán Basin System. J South Am Earth Sci 111: 103451.
Bajracharya S, Vanbroekhoven K, Buisman CJ, Pant D, Strik DP. 2016. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Environ Sci Pollut Res 23 (22): 22292-22308. DOI: 10.1007/s11356-016-7196-x.
Batjes N. 1996. Total carbon and nitrogen in the soils of the world. Eur J Soc Sci 47: 151-163. DOI: 10.1111/j.1365-2389.1996.tb01386.x.
Bonnema M, David CH, Frasson RPDM, Oaida C, Yun SH. 2022. The global surface area variations of lakes and reservoirs as seen from satellite remote sensing. Geophys Res Lett 49 (15): e2022GL098987. DOI: 10.1029/2022GL098987.
Brett MT, Bunn SE, Chandra S, Galloway AW, Guo F, Kainz MJ, Kankaala P, Lau DCP, Moulton TP, Power ME, Rasmussen JB, Taipale SJ, Thorp JH, Wehr JD. 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biol 62 (5): 833-853. DOI: 10.1111/fwb.12909.
Cardille JA, Carpenter SR, Coe MT, Foley JA, Hanson PC, Turner MG, Vano JA. 2007. Carbon and water cycling in lake?rich landscapes: Landscape connections, lake hydrology, and biogeochemistry. J Geophys Res: Biogeoscie 112 (G2): G02031. DOI: 10.1029/2006JG000200.
Chowdhary P, Bharagava RN, Mishra S, Khan N. 2020. Role of industries in water scarcity and its adverse effects on environment and human health. In: Shukla V, Kumar N (eds). Environmental Concerns and Sustainable Development. Springer, Singapore. DOI: 10.1007/978-981-13-5889-0_12.
Cole JJ, Carpenter SR, Pace ML, Van de Bogert MC, Kitchell JL, Hodgson JR. 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9 (5): 558-568. DOI: 10.1111/j.1461-0248.2006.00898.x.
Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Melack JM. 2007. Plumbing the carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171-184. DOI: 10.1007/s10021-006-9013-8.
Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26 (6): 535-538. DOI: 10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2.
Domagalski J, Lin C, Luo Y, Kang J, Wang S, Brown LR, Munn MD. 2007. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen. Agric Water Manag 94 (1-3): 43-53. DOI: 10.1016/j.agwat.2007.08.002.
Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22 (1): GB1018. DOI: 10.1029/2006GB002854.
Gurung A, Adhikari S, Chauhan R, Thakuri S, Nakarmi S, Ghale S, Rijal D. 2019. Water crises in a water-rich country: Case studies from rural watersheds of Nepal's mid-hills. Water Policy 21 (4): 826-847. DOI: 10.2166/wp.2019.245.
Heino J, Alahuhta J, Bini LM, Cai Y, Heiskanen AS, Hellsten S, Angeler DG. 2021. Lakes in the era of global change: Moving beyond single?lake thinking in maintaining biodiversity and ecosystem services. Biol Rev 96 (1): 89-106. DOI: 10.1111/brv.12647.
Hessen DO. 1992. Dissolved organic carbon in a humic lake: Effects on bacterial production and respiration. Hydrobiologia 229 (1): 115-123. DOI: 10.1007/BF00006995.
Higgins MJ, Rock CA, Bouchard R, Wengrezynek B. 2020. Controlling agricultural runoff by use of constructed wetlands. In: Higgins MJ, Rock CA, Bouchard R, Wengrezynek B (eds.). Constructed Wetlands for Water Quality Improvement. CRC Press, Boca Raton, Florida. DOI: 10.1201/9781003069997-43.
Hinkel KM, Eisner WR, Bockheim JG, Nelson FE, Peterson KM, Dai X. 2003. Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska. Arctic Antarctic Alpine Res 35 (3): 291-300. DOI: 10.1657/1523-0430(2003)035[0291:SEAACS]2.0.CO;2.
Last WM, Ginn FM. 2005. Saline systems of the great plains of Western Canada: An overview of the limnogeology and paleolimnology. Saline Syst 1 (1): 1-38. DOI: 10.1186/1746-1448-1-10.
Maltby E, Ormerod S, Acreman M, Dunbar M, Jenkins A, Maberly S, Ward R. 2011. Freshwaters: Openwaters, Wetlands and Floodplains. Chapter 9. UK National Ecosystem Assessment: Technical Report.
Mendonça R, Barros N, Vidal LO, Pacheco F, Kosten S, Roland F. 2012. Greenhouse gas emissions from hydroelectric reservoirs: What knowledge do we have and what is lacking. In: Liu DG (eds.). Greenhouse Gases–Emission, Measurement and Management. DOI: 10.5772/32752.
Miltner A, Kopinke FD, Kindler R, Selesi D, Hartmann A, Kästner M. 2005. Non-phototrophic CO2 fixation by soil microorganisms. Plant Soil 269 (1): 193-203. DOI: 10.1007/s11104-004-0483-1.
Mulholland PJ, Elwood JW. 1982. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34 (5): 490-499. DOI: 10.3402/tellusa.v34i5.10834.
Nebbioso A, Piccolo A. 2013. Molecular characterization of dissolved organic matter (DOM): A critical review. Anal Bioanal Chem 405 (1): 109-124. DOI: 10.1007/s00216-012-6363-2.
Parajuli BP. 2017. Algal flora of Nagdaha Lake, Lalitpur, Nepal. Himal Biodivers 5 (1): 92-95. DOI: 10.3126/hebids.v5i1.36159.
Pilla RM, Griffiths NA, Gu L, Kao SC, McManamay R, Ricciuto DM, Shi X. 2022. Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going? Glob Change Biol 28 (19): 5601-5629. DOI: 10.1111/gcb.16324.
Schindler DW. 2001. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. In: Bendell-Young L et al. (eds.). Waters in Peril. Springer, Boston, MA. DOI: 10.1007/978-1-4615-1493-0_11.
Shah RDT, Shah DN, Nesemann H. 2011. Development of a macroinvertebrate-based Nepal Lake Biotic Index (NLBI): An applied method for assessing the ecological quality of lakes and reservoirs in Nepal. Intl J Hydrol Sci Tech 1 (2): 125-146. DOI: 10.1504/IJHST.2011.040744.
Sharma CM. 2008. Freshwater fishes, fisheries, and habitat prospects of Nepal. Aquat Ecosyst Health Manag 11 (3): 289-297. DOI: 10.1080/14634980802317329.
Sunar CB, Pandey N, Chand B, Upadhyaya LP, Thapa B, Pant RR, Khanal L. 2022. Effect of water physicochemistry on amphibian abundance in Sub-tropical Kupinde Lake of the Nepal Himalaya. Intl J Bonorowo Wetlands 12: 89-95. DOI: 10.13057/bonorowo/w120205.
Thapa S, Shrestha GKC. 2010. Study on water quality and encroachment status of Nagdaha, Lalitpur. Enviro-Zing Sustain Dev Environ Conserv 1: 36-38.
Toming K, Kotta J, Uuemaa E, Sobek S, Kutser T, Tranvik LJ. 2020. Predicting lake dissolved organic carbon at a global scale. Sci Rep 10 (1): 1-8. DOI: 10.1038/s41598-020-65010-3.