Comparing in vitro plant regeneration ability of Oryza sativa L. cv. Fujisaka 5 and Brachiaria decumbens from embryogenic callus

##plugins.themes.bootstrap3.article.main##

ZAINAH DAUD
AHMAD SOFIMAN OSMAN
NADALI B. JELODAR
LAI-KENG CHAN

Abstract

Abstract. Daud Z, Osman AS, Jelodar NB, Chan L-K. 2022. Comparing in vitro plant regeneration ability of Oryza sativa L. cv. Fujisaka 5 and Brachiaria decumbens from embryogenic callus. Cell Biol Dev 7: 20-27. The aim of this study was to compare the plant regeneration ability of Oryza sativa L. cv Fujisaka 5, a cold resistance japonica rice and Brachiaria decumbens Stapf, a tropical savanna grass, using embryogenic calli. The plant regeneration ability of both species has not been reported elsewhere. Friable calli were induced from the O. sativa Fujisaka 5 seeds on MS medium supplemented with 2.0 mgL-1 2,4-D. While embryogenic calli were produced from B. decumbens seeds using a similar culture medium and remained embryogenic even after frequent subculturing. The friable calli of O. sativa Fujisaka 5 became embryogenic (88.2-97.7%) when they were subcultured onto MS medium containing 2,4-D and kinetin or BAP and NAA (0.5 - 1.0 mgL-1) for four weeks. When the induced embryogenic calli (0.5 g) of both species were subcultured onto MS without plant growth regulators, plantlets were generated after one to two weeks with the formation of 2-3 plantlets for O. sativa Fujisaka 5 and 4-5 plantlets for B. decumbens per 0.5 g calli. The present study proved that plant regeneration of B. decumbens could be accomplished via direct somatic embryogenesis, which involved two stages: initiation of somatic embryos from germinating seeds on MS medium supplemented with 2.0 mgL-1 2,4-D and plantlet regeneration achieved via transferring the somatic embryos onto MS medium without PGRs. Plantlets of O. sativa Fujisaka 5 were established via indirect somatic embryogenesis which involved three stages: induction of callus from germinating seeds on MS medium supplemented with 2.0 mgL-1 2,4-D, followed by the production of somatic embryos using MS medium containing 0.5 - 1.0 mgL-1 2,4-D and kinetin or BAP and NAA and finally plant regeneration by subculturing the somatic embryos onto MS medium without PGRs. These established plant regeneration protocols of O. sativa Fujisaka 5 and B. decumbens would be useful for future rice improvement research.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Ali J, Nicolas KLC, Akther S, Torabi A, Ebadi AA, Marfori-Nazarea CM, Mahender A. 2021. Improved anther culture media for enhanced callus formation and plant regeneration in rice (Oryza sativa L.). Plants 10 (5): 1-16. DOI: 10.3390/plants10050839.
Carsono N, Juwendah E, Liberty, Sari S, Damayanti F, Rachmadi M. 2021. Optimize 2,4-D concentration and callus induction time enhance callus proliferation and plant regeneration of three rice genotypes. Biodiversitas 22 (7): 2555-2560. DOI: 10.13057/biodiv/d220702.
Chu CC. 1978. The N6 medium and its applications to anther culture of cereal crops. Proceedings of Symposium on Plant Tissue Culture, Science Press, Peking, China, 25-30 May 1978.
Cui Y, Zhu MM, XU ZJ, CHEN WF. 2020. The breeding of japonica rice in northern China: An 11-year study (2006-2016). J Integr Agric 19 (8): 1941-1946. DOI: 10.1016/S2095-3119 (19)62799-1.
Dai Q, Vergara BS, Visperas RM. 1990. Amelioration of cold injury in rice (Oriza sativa L.): Improving root oxidizing activity by plant growth regulators. Philipp J Crop Sci 15 (1): 49-54.
Fatah FA, Cramon-Taubadel S. 2017. Profitability and competitiveness of rice farming in malaysia: A policy analysis matrix. AJARD 14 (2): 31-47. DOI: 10.22004/ag.econ.265764
Ghobeishavi H, Uliaie ED, Alavikia SS, Valizadeh M. 2015. Study of factors influencing somatic embryogenesis in rice (Oryza sativa L.). Intl J Adv Biol Biom Res 3 (1): 43-50.
Godoy-Hernández G, Vázquez-Flota FA. 2012. Growth measurements: Estimation of cell division and cell expansion. Methods Mol Biol 877: 41-48. DOI: 10.1007/978-1-61779-818-4_4.
Guo F, Zhang H, Liu W, Hu X, Han N, Qian Q, Xu L, Bian H. 2018. Callus initiation from root explants employs different strategies in rice and arabidopsis. PCP 59 (9): 1782-1789. DOI: 10.1093/pcp/pcy095.
Hoo KY, Lee PC, Latip MA, Saruyau N, Aziz ZA. 2021. Callus formation and plant regeneration from immature embryos of pigmented upland rice (Oryza sativa cv. Tadong). J Technol Sci Eng 83 (4): 91-100. DOI: 10/11113/jurnalteknologi.v83.14518.
Khan MdNM, Islam MdM, Islam MdS, Uddin MdI. 2019. Studies on in vitro response to callus induction and gene transfer technique of five high yielding indica rice varieties. J Sci Agric 3: 41-45. DOI: 10.25081/jsa.2019.v3.5465.
Klimek-Chodacka M, Kadluczka D, Lukasiewicz A, Malec-Pala A, Baranski R, Grzebelus E. 2020. Effective callus induction and plant regeneration in callus and protoplast cultures of Nigella damascena L. PCTOC 143: 693-707. DOI: 10.1007/s11240-020-01953-9.
Linsmaier EM, Skoog F. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18: 100-127. DOI: 10.1111/j.1399-3054.1965.tb06874.x.
Low LY, Yang SK, Kok DXA, Ong-Abdullah J, Tan NP, Lai KS. 2018. Transgenic Plants: Gene Constructs, Vector and Transformation Method. New Visions in Plant Science. Intech, London. DOI: 10.5772/intechopen.79369.
Low SG. 2015. Signal grass (Brachiaria decumbens) toxicity in grazing ruminants. Agriculture 5: 971-990. DOI: 10.3390/agriculture5040971.
Meesook K, Pongtongkam P, Poeaim A. 2020. Duration for callus propagation of indica rice (Oryza sativa L.) cultivar Sangyod in suspension culture. IJAT 16 (1): 77-86.
Mishra S, Sanyal I, Amla DV. 2012. Changes in protein pattern during different developmental stages of somatic embryos in chickpea. Biol Plant 56 (4): 613-619. DOI: 10.1007/s10535-012-0124-0.
Moh Hussein N, Huyop F, Kaya Y. 2020. An easy and reliable method for establishment and maintenance of tissue cultures of Nicotiana tabacum cv. TAPM 26. Intl J Sci Lett 2 (2): 62-71. DOI: 10.38058/ijsl.764947.
Mostafiz S, Wagiran A. 2018. Efficient callus induction and regeneration in selected indica rice. Agronomy 8 (5): 1-18. DOI: 10.3390/agronomy8050077.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x.
Ng JM, Mostafiz S, Johon NS, Zulkifli NSA, Wagiran A. 2019. Combination of plant growth regulators, maltose, and partial desiccation treatment enhance somatic embryogenesis in selected Malaysian rice cultivar. Plants 8 (144): 1-15. DOI: 10.3390/plants8060144.
Noor W, Lone R, Kamili AN, Husaini AM. 2022. Callus induction and regeneration in high altitude Himalayan rice genotype SR4 via seed explant. Biotechnol Rep 36 (2022): 1-8. DOI: 10.1016/j.btre.2022.e00762.
OECD/FAO 2020. OECD-FAO Agricultural Outlook 2020-2029. FAO, Rome/OECD Publishing, Paris. DOI: 10.1787/1112c23b-en.
Ogura H, Kyozuka J, Hayashi Y., Koba T., Shimamoto K. 1987. Field performance and cytology of protoplast-derived rice (Oryza sativa): high yield and low degree of variation of four japonica cultivars. Theoret Appl Genetics 74: 670-676. DOI: 10.1007/BF00288869.
Page MT, Parry MAJ, Carmo-Silva E. 2019. A high-throughput transient expression system for rice. Plant Cell Environ 42 (7): 2057-2064. DOI: 10.1111/pce.13542.
Paramasivam S, Harikrishna JA. 2020. Effect of culture media and conditions on callus induction and plant regeneration of Malaysian wild rice Oryza rufipogon IRGC105491. Res J Biotechnol 15 (3): 120-127.
Pathania S, Sandhu JS. 2021. Effect of 2,4-d on embryogenic callus induction and evaluation of g418 on growth inhibition in rice calli. Agric Res J 58 (1): 18-22. DOI: 10.5958/2395-146X.2021.00002.8.
Paul S, Roychoudhury A. 2019. Comparative analyses of regeneration potentiality of eight indigenous aromatic indica rice (Oryza sativa L.) varieties. Intl J Biol Sci 6 (1): 55-64. DOI: 10.26438/ijsrbs/v6i1.5564.
Poddar S, Tanaka J, Cate JHD, Staskwicz B, Cho MJ. 2020. Efficient isolation of protoplasts from rice calli with pause points and its application in transient gene expression and genome editing assays. Plant Methods 16 (1): 1-11. DOI: 10.1186/s13007-020-00692-4.
Rahman MT, Hasanuzzaman M, Islam MM, Mondal MTR, Islam MS, Saha NR. 2021. Optimization for in vitro regeneration in four local cultivars of indica rice. AJAB 2021 (4): 1-9. DOI: 10.35495/ajab.2021.01.045.
Sarena CO, Shaharudin A, Tumin SA. 2019. The Status of the Paddy and Rice Industry in Malaysia. Khazanah Research Institute, Kuala Lumpur.
Sathish S, Venkatesh R, Safia N, Sathishkumar R. 2018. Studies on growth dynamics of embryogenic cell suspension cultures of commercially important Indica rice cultivars ASD16 and Pusa basmati. 3 Biotech 8 (194): 1-9. DOI: 10.1007/s13205-018-1213-3.
Tan LW, Rahman ZA, Goh HH, Hwang DJ, Ismail I, Zainal Z. 2017. Production of transgenic rice (indica cv. MR219) overexpressing ABP57 gene through Agrobacterium-mediated transformation. Sains Malays 46 (5): 703-711. DOI: 10.17576/jsm-2017-4605-04.
United Nations. 2019. World Population Prospects 2019. Department of Economic and Social Affairs, New York City.
Vennapusa AR, Vemanna RS, Rajashekar RBH, Babitha KC, Kiranmai K, Nareshkumar A, Sudhakar C. 2015. An efficient callus induction and regeneration protocol for a drought tolerant rice indica genotype AC39020. J Plant Sci 3 (5): 248-254. DOI: 10.11648/j.jps.20150305.11.
Verma D, Joshi R, Shukla A, Kumar P. 2011. Protocol for in vitro somatic embryogenesis and regeneration of rice (Oryza sativa L.). Indian J Exp Biol 49 (12): 958-963.
Wang CL, Zhang YD, Zhu Z, Chen T, Zhao QY, Zhong WG, Yang J, Yao S, Zhou LH, Zhao L, Li YS. 2017. Research progress on the breeding of japonica super rice varieties in Jiangsu Province, China. J Integr Agric 16 (5): 992-999. DOI: 10.1016/S2095-3119 (16)61580-0.
Zainah D. 2015. Protoplast Culture of Oryza sativa L. and Brachiaria decumbens. [Dissertation]. Universiti Sains Malaysia, Penang, Malaysia.
Zheng W, Ma Z, Zhao M, Xiao M, Zhao J, Wang C, Gao H, Bai Y, Wang H, Sui G. 2020. Research and development strategies for hybrid japonica rice. Rice 13 (1): 1-22. DOI: 10.1186/s12284-020-00398-0.